Foraging strategies are maintained despite workforce reduction: A multidisciplinary survey on the pollen collected by a social pollinator

. 2019 ; 14 (11) : e0224037. [epub] 20191106

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31693676

The way pollinators gather resources may play a key role for buffering their population declines. Social pollinators like bumblebees could adjust their foraging after significant workforce reductions to keep provisions to the colony optimal, especially in terms of pollen diversity and quantity. To test what effects a workforce reduction causes on the foraging for pollen, commercially-acquired colonies of the bumblebee Bombus terrestris were allowed to forage in the field and they were experimentally manipulated by removing half the number of workers. For each bumblebee, the pollen pellets were taxonomically identified with DNA metabarcoding of the ITS2 region followed by a statistical filtering based on ROC curves to filter out underrepresented OTUs. Video cameras and network analyses were employed to investigate changes in foraging strategies and behaviour. After filtering out the false-positives, HTS metabarcoding yielded a high plant diversity in the pollen pellets; for plant identity and pollen quantity traits no differences emerged between samples from treated and from control colonies, suggesting that plant choice was influenced mainly by external factors such as the plant phenology. The colonies responded to the removal of 50% of their workers by increasing the foraging activity of the remaining workers, while only negligible changes were found in diet breadth and indices describing the structure of the pollen transport network. Therefore, a consistency in the bumblebees' feeding strategies emerges in the short term despite the lowered workforce.

Erratum v

PubMed

Zobrazit více v PubMed

Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, et al. Climate change impacts on bumblebees converge across continents. Science. 2015;349: 177–180. 10.1126/science.aaa7031 PubMed DOI

Biella P, Bogliani G, Cornalba M, Manino A, Neumayer J, Porporato M, et al. Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). J Insect Conserv. 2017;21: 357–366. 10.1007/s10841-017-9983-1 DOI

Ollerton J, Erenler H, Edwards M, Crockett R. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science. 2014;346: 1360–1362. 10.1126/science.1257259 PubMed DOI

Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederström V, Herbertsson L, et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature. 2015;521: 77–80. 10.1038/nature14420 PubMed DOI

Isbell F, Tilman D, Polasky S, Binder S, Hawthorne P. Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol Lett. 2013;16: 454–460. 10.1111/ele.12066 PubMed DOI

Jha S. Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow. Mol Ecol. 2015;24: 993–1006. 10.1111/mec.13090 PubMed DOI

Kallioniemi E, Åström J, Rusch GM, Dahle S, Åström S, Gjershaug JO. Local resources, linear elements and mass-flowering crops determine bumblebee occurrences in moderately intensified farmlands. Agric Ecosyst Environ. 2017;239: 90–100. 10.1016/j.agee.2016.12.039 DOI

Buri P, Humbert J-Y, Arlettaz R. Promoting pollinating insects in intensive agricultural matrices: Field-scale experimental manipulation of hay-meadow mowing regimes and its effects on bees. PLOS ONE. 2014;9: e85635 10.1371/journal.pone.0085635 PubMed DOI PMC

Osgathorpe LM, Park K, Goulson D, Acs S, Hanley N. The trade-off between agriculture and biodiversity in marginal areas: Can crofting and bumblebee conservation be reconciled? Ecol Econ. 2011;70: 1162–1169.

Smith KF, Sax DF, Lafferty KD. Evidence for the Role of Infectious Disease in Species Extinction and Endangerment. Conserv Biol. 2006;20: 1349–1357. 10.1111/j.1523-1739.2006.00524.x PubMed DOI

Lindström SAM, Herbertsson L, Rundlöf M, Bommarco R, Smith HG. Experimental evidence that honeybees depress wild insect densities in a flowering crop. Proc R Soc B. 2016;283: 20161641 10.1098/rspb.2016.1641 PubMed DOI PMC

Norfolk O, Gilbert F, Eichhorn MP. Alien honeybees increase pollination risks for range-restricted plants. Divers Distrib. 2018;24: 705–713. 10.1111/ddi.12715 DOI

Pendrel BA, Plowright RC. Larval feeding by adult bumble bee workers (Hymenoptera: Apidae). Behav Ecol Sociobiol. 1981;8: 71–76.

Müller CB, Schmid-Hempel P. Variation in life-history pattern in relation to worker mortality in the bumble-bee, Bombus lucorum. Funct Ecol. 1992; 48–56.

Kaluza Wallace Helen, Alexander Keller, Heard Tim A., Bradley Jeffers, Nora Drescher, et al. Generalist social bees maximize diversity intake in plant species‐rich and resource‐abundant environments. Ecosphere. 2017;8: e01758 10.1002/ecs2.1758 DOI

Vanderplanck M, Leroy B, Wathelet B, Wattiez R, Michez D. Standardized protocol to evaluate pollen polypeptides as bee food source. Apidologie. 2014;45: 192–204.

Tasei J-N, Aupinel P. Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie. 2008;39: 397–409. 10.1051/apido:2008017 DOI

Génissel A, Aupinel P, Bressac C, Tasei J-N, Chevrier C. Influence of pollen origin on performance of Bombus terrestris micro-colonies. Entomol Exp Appl. 2002;104: 329–336. 10.1046/j.1570-7458.2002.01019.x DOI

Jandt JM, Huang E, Dornhaus A. Weak specialization of workers inside a bumble bee (<Emphasis Type = "Italic">Bombus impatiens</Emphasis>) nest. Behav Ecol Sociobiol. 2009;63: 1829–1836. 10.1007/s00265-009-0810-x DOI

Jandt JM, Dornhaus A. Bumblebee response thresholds and body size: does worker diversity increase colony performance? Anim Behav. 2014;87: 97–106. 10.1016/j.anbehav.2013.10.017 DOI

Emlen JM. The role of time and energy in food preference. Am Nat. 1966;100: 611–617.

MacArthur RH, Pianka ER. On optimal use of a patchy environment. Am Nat. 1966;100: 603–609.

Fontaine C, Collin CL, Dajoz I. Generalist foraging of pollinators: diet expansion at high density. J Ecol. 2008;96: 1002–1010. 10.1111/j.1365-2745.2008.01405.x DOI

Bolnick DI. Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature. 2001;410: 463 10.1038/35068555 PubMed DOI

Hagbery J, Nieh JC. Individual lifetime pollen and nectar foraging preferences in bumble bees. Naturwissenschaften. 2012;99: 821–832. 10.1007/s00114-012-0964-7 PubMed DOI

Biella P, Ollerton J, Barcella M, Assini S. Network analysis of phenological units to detect important species in plant-pollinator assemblages: can it inform conservation strategies? Community Ecol. 2017;18: 1–10. 10.1556/168.2017.18.1.1 DOI

Bosch J, Martín González AM, Rodrigo A, Navarro D. Plant–pollinator networks: adding the pollinator’s perspective. Ecol Lett. 2009;12: 409–419. 10.1111/j.1461-0248.2009.01296.x PubMed DOI

Pornon A, Andalo C, Burrus M, Escaravage N. DNA metabarcoding data unveils invisible pollination networks. Sci Rep. 2017;7: 16828 10.1038/s41598-017-16785-5 PubMed DOI PMC

Galimberti A, De Mattia F, Bruni I, Scaccabarozzi D, Sandionigi A, Barbuto M, et al. A DNA barcoding approach to characterize pollen collected by honeybees. PLoS One. 2014;9: e109363 10.1371/journal.pone.0109363 PubMed DOI PMC

Müller A, Diener S, Schnyder S, Stutz K, Sedivy C, Dorn S. Quantitative pollen requirements of solitary bees: Implications for bee conservation and the evolution of bee–flower relationships. Biol Conserv. 2006;130: 604–615. 10.1016/j.biocon.2006.01.023 DOI

Williams NM, Kremen C. Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecol Appl. 2007;17: 910–921. 10.1890/06-0269 PubMed DOI

Sickel W, Ankenbrand MJ, Grimmer G, Holzschuh A, Härtel S, Lanzen J, et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 2015;15: 20 10.1186/s12898-015-0051-y PubMed DOI PMC

Richardson RT, Lin C-H, Sponsler DB, Quijia JO, Goodell K, Johnson RM. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Sci. 2015;3: 1400066. PubMed PMC

Willmer PG, Cunnold H, Ballantyne G. Insights from measuring pollen deposition: quantifying the pre-eminence of bees as flower visitors and effective pollinators. Arthropod-Plant Interact. 2017;11: 411–425. 10.1007/s11829-017-9528-2 DOI

Jaffé R, Dietemann V, Allsopp MH, Costa C, Crewe RM, Dall’olio R, et al. Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conserv Biol. 2010;24: 583–593. 10.1111/j.1523-1739.2009.01331.x PubMed DOI

Brown MJF, Loosli R, Schmid‐Hempel P. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos. 2000;91: 421–427. 10.1034/j.1600-0706.2000.910302.x DOI

Schmid-Hempel P. On the evolutionary ecology of host–parasite interactions: addressing the question with regard to bumblebees and their parasites. Naturwissenschaften. 2001;88: 147–158. 10.1007/s001140100222 PubMed DOI

Gill RJ, Ramos-Rodriguez O, Raine NE. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature. 2012;491: 105–108. 10.1038/nature11585 PubMed DOI PMC

Tosi S, Nieh JC, Sgolastra F, Cabbri R, Medrzycki P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc R Soc B. 2017;284: 20171711 10.1098/rspb.2017.1711 PubMed DOI PMC

Baude M, Danchin É, Mugabo M, Dajoz I. Conspecifics as informers and competitors: an experimental study in foraging bumble-bees. Proc R Soc Lond B Biol Sci. 2011;278: 2806–2813. 10.1098/rspb.2010.2659 PubMed DOI PMC

Ruedenauer FA, Spaethe J, Leonhardt SD. Hungry for quality—individual bumblebees forage flexibly to collect high-quality pollen. Behav Ecol Sociobiol. 2016;70: 1209–1217. 10.1007/s00265-016-2129-8 DOI

Leonhardt SD, Blüthgen N. The same, but different: pollen foraging in honeybee and bumblebee colonies. Apidologie. 2012;43: 449–464. 10.1007/s13592-011-0112-y DOI

Geslin B, Baude M, Mallard F, Dajoz I. Effect of local spatial plant distribution and conspecific density on bumble bee foraging behaviour. Ecol Entomol. 2014;39: 334–342. 10.1111/een.12106 DOI

Pernal SF, Currie RW. The influence of pollen quality on foraging behavior in honeybees (Apis mellifera L.). Behav Ecol Sociobiol. 2001;51: 53–68.

Pomeroy N, Plowright RC. Larval ejection following ${\rm CO}_{2}$ narcosis of bumble bees (Hymenoptera: Apidae). J Kans Entomol Soc. 1979;52: 215–217.

Lucas A, Bodger O, Brosi BJ, Ford CR, Forman DW, Greig C, et al. Floral resource partitioning by individuals within generalised hoverfly pollination networks revealed by DNA metabarcoding. Sci Rep. 2018;8: 5133 10.1038/s41598-018-23103-0 PubMed DOI PMC

Gresty CEA, Clare E, Devey DS, Cowan RS, Csiba L, Malakasi P, et al. Flower preferences and pollen transport networks for cavity-nesting solitary bees: Implications for the design of agri-environment schemes. Ecol Evol. 2018;0. 10.1002/ece3.4234 PubMed DOI PMC

Mezzasalma V, Bruni I, Fontana D, Galimberti A, Magoni C, Labra M. A DNA barcoding approach for identifying species in Amazonian traditional medicine: The case of Piri-Piri. Plant Gene. 2017;9: 1–5.

Keller A, Danner N, Grimmer G, Ankenbrand von der, Ohe von der, Ohe W, et al. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biol. 2015;17: 558–566. 10.1111/plb.12251 PubMed DOI

Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLOS ONE. 2010;5: e8613 10.1371/journal.pone.0008613 PubMed DOI PMC

Bruno A, Sandionigi A, Rizzi E, Bernasconi M, Vicario S, Galimberti A, et al. Exploring the under-investigated “microbial dark matter” of drinking water treatment plants. Sci Rep. 2017;7: 44350 10.1038/srep44350 PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215: 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Bell KL, Burgess KS, Botsch JC, Dobbs EK, Read TD, Brosi BJ. Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures. Mol Ecol. 2018. 10.1111/mec.14840 PubMed DOI

Metz CE. Basic principles of ROC analysis. Semin Nucl Med. 1978;8: 283–298. 10.1016/S0001-2998(78)80014-2 PubMed DOI

Serrao NR, Reid SM, Wilson CC. Establishing detection thresholds for environmental DNA using receiver operator characteristic (ROC) curves. Conserv Genet Resour. 2017; 1–8. 10.1007/s12686-017-0817-y DOI

Nutz S, Döll K, Karlovsky P. Determination of the LOQ in real-time PCR by receiver operating characteristic curve analysis: application to qPCR assays for Fusarium verticillioides and F. proliferatum. Anal Bioanal Chem. 2011;401: 717–726. 10.1007/s00216-011-5089-x PubMed DOI PMC

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12: 77 10.1186/1471-2105-12-77 PubMed DOI PMC

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing; Vienna, Austria: ISBN 3-900051-07-0; 2017. Available: https://www.R-project.org/

Tur C, Olesen JM, Traveset A. Increasing modularity when downscaling networks from species to individuals. Oikos. 2015;124: 581–592.

Tur C, Vigalondo B, Trøjelsgaard K, Olesen JM, Traveset A. Downscaling pollen–transport networks to the level of individuals. J Anim Ecol. 2014;83: 306–317. 10.1111/1365-2656.12130 PubMed DOI

Kaiser-Bunbury CN, Blüthgen N. Integrating network ecology with applied conservation: a synthesis and guide to implementation. AoB Plants. 2015;7: plv076 10.1093/aobpla/plv076 PubMed DOI PMC

Schoener TW. Food webs from the small to the large: the Robert H. MacArthur Award Lecture. Ecology. 1989;70: 1559–1589.

Poisot T, Canard E, Mouquet N, Hochberg ME. A comparative study of ecological specialization estimators. Methods Ecol Evol. 2012;3: 537–544.

Blüthgen N, Menzel F, Blüthgen N. Measuring specialization in species interaction networks. BMC Ecol. 2006;6: 9 10.1186/1472-6785-6-9 PubMed DOI PMC

Freeman LC. Centrality in social networks conceptual clarification. Soc Netw. 1978;1: 215–239.

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67: 1–48. 10.18637/jss.v067.i01 DOI

Bersier L-F, Banašek-Richter C, Cattin M-F. Quantitative descriptors of food-web matrices. Ecology. 2002;83: 2394–2407.

Almeida-Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos. 2008;117: 1227–1239. 10.1111/j.0030-1299.2008.16644.x DOI

Beckett SJ. Improved community detection in weighted bipartite networks. R Soc Open Sci. 2016;3: 140536 10.1098/rsos.140536 PubMed DOI PMC

Farine DR. A guide to null models for animal social network analysis. Methods Ecol Evol. 2017;8: 1309–1320. 10.1111/2041-210X.12772 PubMed DOI PMC

van Borkulo C, Boschloo L, Borsboom D, Penninx BWJH, Waldorp LJ, Schoevers RA. Association of symptom network structure with the course of depression. JAMA Psychiatry. 2015;72: 1219–1226. 10.1001/jamapsychiatry.2015.2079 PubMed DOI

Dormann CF, Gruber B, Fründ J. Introducing the bipartite package: analysing ecological networks. R News. 2008;8/2: 8–11.

Oksanen J, Blanchet FG, Kindt R, Legendre P, O’hara RB, Simpson GL, et al. vegan: community ecology package. R package version 2.4–6. HttpsCRANR-Proj. 2018. Available: https://CRAN.R-project.org/package=vegan

van Hoorde A, Hermy M, Rotthier B. Bijenplantengids. Koninklijke vlaamse imkersbond. Informatiecentrum voor Bijenteelt; 1996.

Maurizio A, Grafl I. Das Trachtpflanzenbuch. Nektar und Pollen–die wichtigsten Nahrungsquellen der Honigbiene. Ehrenwirth Verlag, München; 1969.

Bocci G. TR8: an R package for easily retrieving plant species traits. Methods Ecol Evol. 2015;6: 347–350.

Kleijn D, Raemakers I. A retrospective analysis of pollen host plant use by stable and declining bumble bee species. Ecology. 2008;89: 1811–1823. 10.1890/07-1275.1 PubMed DOI

Teper D. Food plants of Bombus terrestris L. determined by palynological analysis of pollen loads. J Apicul Sci. 2004;48: 75–81.

Saifuddin M, Jha S. Colony-level variation in pollen collection and foraging preferences among wild-caught bumble bees (Hymenoptera: Apidae). Environ Entomol. 2014;43: 393–401. 10.1603/EN13261 PubMed DOI

Filipiak M, Kuszewska K, Asselman M, Denisow B, Stawiarz E, Woyciechowski M, et al. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. PLOS ONE. 2017;12: e0183236 10.1371/journal.pone.0183236 PubMed DOI PMC

Van Laere O, Martens N. Influence d’une diminution artificielle de la provision de protéines sur l’activité de collecte de la colonie d’abeilles. Apidologie. 1971;2: 197–204.

Lloyd DG. Sexual strategies in plants. New Phytol. 1980;86: 69–79.

Lihoreau M, Chittka L, Raine NE. Travel optimization by foraging bumblebees through readjustments of traplines after discovery of new feeding locations. Am Nat. 2010;176: 744–757. 10.1086/657042 PubMed DOI

Williams NM, Thomson JD. Trapline foraging by bumble bees: III. Temporal patterns of visitation and foraging success at single plants. Behav Ecol. 1998;9: 612–621.

Leadbeater E, Florent C. Foraging bumblebees do not rate social information above personal experience. Behav Ecol Sociobiol. 2014;68: 1145–1150.

Goulson D. Bumblebees: their behaviour and ecology. Oxford University Press, USA; 2003.

Jandt J, Gordon D. The behavioral ecology of variation in social insects. Curr Opin Insect Sci. 2016;15: 40–44. 10.1016/j.cois.2016.02.012 PubMed DOI

Jeanson R, Weidenmüller A. Interindividual variability in social insects–proximate causes and ultimate consequences. Biol Rev. 2014;89: 671–687. 10.1111/brv.12074 PubMed DOI

Biella P, Akter A, Ollerton J, Tarrant S, Janeček Š, Jersáková J, et al. Experimental loss of generalist plants reveals alterations in plant-pollinator interactions and a constrained flexibility of foraging. Sci Rep. 2019;9: 7376 10.1038/s41598-019-43553-4 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...