Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant-pollinator network

. 2018 ; 6 () : e6025. [epub] 20181203

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30533311

Hoverflies (Diptera: Syrphidae) are among the most important pollinators, although they attract less attention than bees. They are usually thought to be rather opportunistic flower visitors, although previous studied demonstrated that they show colour preferences and their nectar feeding is affected by morphological constraints related to flower morphology. Despite the growing appreciation of hoverflies and other non-bee insects as pollinators, there is a lack of community-wide studies of flower visitation by syrphids. The aim of this paper is to provide a detailed analysis of flower visitation patterns in a species rich community of syrphids in a Central European grassland and to evaluate how species traits shape the structure of the plant-hoverfly flower visitation network. We found that different species varied in the level of specialisation, and while some species visited a similar spectre of flowers, others partitioned resources more strongly. There was a consistent difference in both specialisation and flower preferences between three syrphid subfamilies. Eristalinae and Pipizinae were more specialised than Syrphinae. Trait-based analyses showed that relative flower visitation (i) increased with plant height, but most strongly in Eristalinae; (ii) increased with inflorescence size in small species from all three subfamilies, but was independent of inflorescence size in large species of Eristalinae and Syrphinae; and (iii) depended on flower colour, but in a subfamily-specific way. Eristalinae showed the strongest flower colour preferences for white flowers, Pipizinae visited mostly white and yellow flowers, while Syrphinae were less affected by flower colour. Exploration of the structure of the plant-hoverfly flower visitation network showed that the network was both modular and nested. We also found that there were almost no differences in specialisation and relative visitation frequency between males and females. Overall, we showed that flower visitation in syrphids was affected by phylogenetic relatedness, body size of syrphids and several plant traits.

Zobrazit více v PubMed

Akter A, Biella P, Klecka J. Effects of small-scale clustering of flowers on pollinator foraging behaviour and flower visitation rate. PLOS ONE. 2017;12(11):e0187976. doi: 10.1371/journal.pone.0187976. PubMed DOI PMC

Bascompte J, Jordano P, Melián CJ, Olesen JM. The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(16):9383–9387. doi: 10.1073/pnas.1633576100. PubMed DOI PMC

Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature. 2009;458(7241):1018–1020. doi: 10.1038/nature07950. PubMed DOI

Benadi G, Hovestadt T, Poethke H-J, Blüthgen N. Specialization and phenological synchrony of plant-pollinator interactions along an altitudinal gradient. Journal of Animal Ecology. 2014;83(3):639–650. doi: 10.1111/1365-2656.12158. PubMed DOI

Blüthgen N, Menzel F, Blüthgen N. Measuring specialization in species interaction networks. BMC Ecology. 2006;6(1):9. doi: 10.1186/1472-6785-6-9. PubMed DOI PMC

Branquart E, Hemptinne J-L. Selectivity in the exploitation of floral resources by hoverflies (Diptera: Syrphinae) Ecography. 2000;23(6):732–742. doi: 10.1111/j.1600-0587.2000.tb00316.x. DOI

Burgos E, Ceva H, Perazzo RP, Devoto M, Medan D, Zimmermann M, Delbue AM. Why nestedness in mutualistic networks? Journal of Theoretical Biology. 2007;249(2):307–313. doi: 10.1016/j.jtbi.2007.07.030. PubMed DOI

Carstensen DW, Sabatino M, Morellato LPC. Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space. Ecology. 2016;97(5):1298–1306. doi: 10.1890/15-0830.1. PubMed DOI

Colley M, Luna J. Relative attractiveness of potential beneficial insectary plants to aphidophagous hoverflies (Diptera: Syrphidae) Environmental Entomology. 2000;29(5):1054–1059. doi: 10.1603/0046-225X-29.5.1054. DOI

Cowgill S, Sotherton N, Wratten S. The selective use of floral resources by the hoverfly Episyrphus balteatus (Diptera: Syrphidae) on farmland. Annals of Applied Biology. 1993;122(2):223–231. doi: 10.1111/j.1744-7348.1993.tb04029.x. DOI

Dormann CF. How to be a specialist? quantifying specialisation in pollination networks. Network Biology. 2011;1(1):1–20.

Dormann CF, Fründ J, Blüthgen N, Gruber B. Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal. 2009;2:7–24. doi: 10.2174/1874213000902010007. DOI

Dormann CF, Fründ J, Schaefer HM. Identifying causes of patterns in ecological networks: opportunities and limitations. Annual Review of Ecology, Evolution, and Systematics. 2017;48:559–584. doi: 10.1146/annurev-ecolsys-110316-022928. DOI

Fortuna MA, Stouffer DB, Olesen JM, Jordano P, Mouillot D, Krasnov BR, Poulin R, Bascompte J. Nestedness versus modularity in ecological networks: two sides of the same coin? Journal of Animal Ecology. 2010;79(4):811–817. PubMed

Forup ML, Henson KS, Craze PG, Memmott J. The restoration of ecological interactions: plant-pollinator networks on ancient and restored heathlands. Journal of Applied Ecology. 2008;45(3):742–752.

Gervasi DD, Schiestl FP. Real-time divergent evolution in plants driven by pollinators. Nature Communications. 2017;8 doi: 10.1038/ncomms14691. Article 14691. PubMed DOI PMC

Gilbert F. Flower visiting by hoverflies (Syrphidae) Journal of Biological Education. 1980;14(1):70–74. doi: 10.1080/00219266.1980.9654289. DOI

Gilbert FS. Foraging ecology of hoverflies: morphology of the mouthparts in relation to feeding on nectar and pollen in some common urban species. Ecological Entomology. 1981;6(3):245–262. doi: 10.1111/j.1365-2311.1981.tb00612.x. DOI

Gotelli NJ, Hart EM, Ellison AM. EcoSimR: null model analysis for ecological data. http://github.com/gotellilab/EcoSimR. R package version 0.1.02015 doi: 10.5281/zenodo.16522. DOI

Goulson D, Lye GC, Darvill B. Diet breadth, coexistence and rarity in bumblebees. Biodiversity and Conservation. 2008;17(13):3269–3288. doi: 10.1007/s10531-008-9428-y. DOI

Hardin G. The competitive exclusion principle. Science. 1960;131(3409):1292–1297. doi: 10.1126/science.131.3409.1292. PubMed DOI

Haslett J. Interpreting patterns of resource utilization: randomness and selectivity in pollen feeding by adult hoverflies. Oecologia. 1989a;78(4):433–442. doi: 10.1007/BF00378732. PubMed DOI

Haslett JR. Adult feeding by holometabolous insects: pollen and nectar as complementary nutrient sources for Rhingia campestris (Diptera: Syrphidae) Oecologia. 1989b;81(3):361–363. doi: 10.1007/BF00377084. PubMed DOI

Hickman JM, Lövei GL, Wratten SD. Pollen feeding by adults of the hoverfly Melanostoma fasciatum (Diptera: Syrphidae) New Zealand Journal of Zoology. 1995;22(4):387–392. doi: 10.1080/03014223.1995.9518057. DOI

Hicks DM, Ouvrard P, Baldock KC, Baude M, Goddard MA, Kunin WE, Mitschunas N, Memmott J, Morse H, Nikolitsi M, Osgathorpe LM, Potts SG, Robertson KM, Scott AV, Sinclair F, Westbury DB, Stone GN. Food for pollinators: quantifying the nectar and pollen resources of urban flower meadows. PLOS ONE. 2016;11(6):e0158117. doi: 10.1371/journal.pone.0158117. PubMed DOI PMC

Hubbell SP. The unified neutral theory of biodiversity and biogeography. Princeton University Press; Princeton: 2001. PubMed

Inouye D, Larson BM, Ssymank A, Kevan PG. Flies and flowers III: ecology of foraging and pollination. Journal of Pollination Ecology. 2015;16(16):115–133.

Irvin N, Wratten S, Frampton C, Bowie M, Evans A, Moar N. The phenology and pollen feeding of three hover fly (Diptera: Syrphidae) species in Canterbury, New Zealand. New Zealand Journal of Zoology. 1999;26(2):105–115. doi: 10.1080/03014223.1999.9518182. DOI

Janovský Z, Mikát M, Hadrava J, Horčičková E, Kmecová K, Požárová D, Smyčka J, Herben T. Conspecific and heterospecific plant densities at small-scale can drive plant-pollinator interactions. PLOS ONE. 2013;8(10):e77361. doi: 10.1371/journal.pone.0077361. PubMed DOI PMC

Jauker F, Wolters V. Hover flies are efficient pollinators of oilseed rape. Oecologia. 2008;156(4):819–823. doi: 10.1007/s00442-008-1034-x. PubMed DOI

Kanstrup J, Olesen JM. Plant–flower visitor interactions in a Neotropical rain forest canopy: community structure and generalisation level. In: Totland Ø, editor. The scandinavian association for pollination ecology honours knut Fægri. The Norwegian Academy of Science and Letters; Oslo: 2000. pp. 33–42.

Kendall D, Wilson D, Guttridge C, Anderson H. Testing Eristalis as a pollinator of covered crops. Long Ashton Research Station Reports. 1971;1971:120–121.

King C, Ballantyne G, Willmer PG. Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods in Ecology and Evolution. 2013;4(9):811–818. doi: 10.1111/2041-210X.12074. DOI

Klecka J, Hadrava J, Koloušková P. Vertical stratification of plant–pollinator interactions in a temperate grassland. PeerJ. 2017;6:e4998 PubMed PMC

Lucas A, Bodger O, Brosi BJ, Ford CR, Forman DW, Greig C, Hegarty M, Jones L, Neyland PJ, De Vere N. Floral resource partitioning by individuals within generalised hoverfly pollination networks revealed by DNA metabarcoding. Scientific Reports. 2018a;8 Article 5133. PubMed PMC

Lucas A, Bodger O, Brosi BJ, Ford CR, Forman DW, Greig C, Hegarty M, Neyland PJ, De Vere N. Generalisation and specialisation in hoverfly (Syrphidae) grassland pollen transport networks revealed by DNA metabarcoding. Journal of Animal Ecology. 2018b;87(4):1008–1021. PubMed PMC

Lunau K. Visual ecology of flies with particular reference to colour vision and colour preferences. Journal of Comparative Physiology A. 2014;200(6):497–512. doi: 10.1007/s00359-014-0895-1. PubMed DOI

Lunau K, Wacht S. Optical releasers of the innate proboscis extension in the hoverfly Eristalis tenax L. (Syrphidae, Diptera) Journal of Comparative Physiology A. 1994;174(5):575–579.

MacArthur R, Levins R. The limiting similarity, convergence, and divergence of coexisting species. American Naturalist. 1967;101(921):377–385. doi: 10.1086/282505. DOI

Moquet L, Laurent E, Bacchetta R, Jacquemart A-L. Conservation of hoverflies (Diptera, Syrphidae) requires complementary resources at the landscape and local scales. Insect Conservation and Diversity. 2018;11(1):72–87. doi: 10.1111/icad.12245. PubMed DOI PMC

Ohsawa R, Namai H. The effect of insect pollinators on pollination and seed setting in Brassica campestris cv. Nozawana and Brassica juncea cv. Kikarashina. Japanese Journal of Breeding. 1987;37(4):453–463. doi: 10.1270/jsbbs1951.37.453. DOI

Ohsawa R, Namai H. Cross-pollination Efficiency of Insect Pollinators (Shimahanaabu, Eristalis cerealis) in Rapeseed, Brassica napus L. Japanese Journal of Breeding. 1988;38(1):91–102. doi: 10.1270/jsbbs1951.38.91. DOI

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. Vegan: community ecology package. https://CRAN.R-project.org/package=vegan. R package version 2.4-42017

Olesen JM, Bascompte J, Dupont YL, Jordano P. The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(50):19891–19896. doi: 10.1073/pnas.0706375104. PubMed DOI PMC

Orford KA, Vaughan IP, Memmott J. The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proceedings of the Royal Society B: Biological Sciences. 2015;282 doi: 10.1098/rspb.2014.2934. Article 20142934. PubMed DOI PMC

Pianka ER. The structure of lizard communities. Annual Review of Ecology and Systematics. 1973;4(1):53–74. doi: 10.1146/annurev.es.04.110173.000413. DOI

R Core Team . R Foundation for Statistical Computing; Vienna: 2015.

Rader R, Bartomeus I, Garibaldi LA, Garratt MP, Howlett BG, Winfree R, Cunningham SA, Mayfield MM, Arthur AD, Andersson GK, Bommarco R, Brittain C, Carvalheiro LG, Chacoff NP, Entling MH, Foully B, Freitas BM, Gemmill-Herren B, Ghazoul J, Griffin SR, Gross CL, Herbertsson L, Herzog F, Hipólito J, Jaggar S, Jauker F, Klein A-M, Kleijn D, Krishnan S, Lemos CQ, Lindström SA, Mandelik Y, Monteiro VM, Nelson W, Nilsson L, Pattemore DE, Pereira NDO, Pisanty G, Potts SG, Reemer M, Rundlöf M, Sheffield CS, Scheper J, Schüepp C, Smith HG, Stanley DA, Stout JC, Szentgyörgyi H, Taki H, Vergara CH, Viana BF, Woyciechowski M. Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(1):146–151. doi: 10.1073/pnas.1517092112. PubMed DOI PMC

Rader R, Edwards W, Westcott DA, Cunningham SA, Howlett BG. Pollen transport differs among bees and flies in a human-modified landscape. Diversity and Distributions. 2011;17(3):519–529. doi: 10.1111/j.1472-4642.2011.00757.x. DOI

Rader R, Howlett BG, Cunningham SA, Westcott DA, Newstrom-Lloyd LE, Walker MK, Teulon DA, Edwards W. Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. Journal of Applied Ecology. 2009;46(5):1080–1087. doi: 10.1111/j.1365-2664.2009.01700.x. DOI

Rotheray GE, Gilbert F. The natural history of hoverflies. Forrest Text; Tresaith: 2011.

Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18(1):529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC

Sakavara A, Tsirtsis G, Roelke DL, Mancy R, Spatharis S. Lumpy species coexistence arises robustly in fluctuating resource environments. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(4):738–743. doi: 10.1073/pnas.1705944115. PubMed DOI PMC

Sakurai A, Takahashi K. Flowering phenology and reproduction of the Solidago virgaurea L. complex along an elevational gradient on Mt Norikura, central Japan. Plant Species Biology. 2017;32(4):270–278. doi: 10.1111/1442-1984.12153. DOI

Saunders ME. Insect pollinators collect pollen from wind-pollinated plants: implications for pollination ecology and sustainable agriculture. Insect Conservation and Diversity. 2017;11(1):13–31.

Scheffer M, Van Nes EH. Self-organized similarity, the evolutionary emergence of groups of similar species. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(16):6230–6235. doi: 10.1073/pnas.0508024103. PubMed DOI PMC

Scheffer M, Van Nes EH, Vergnon R. Toward a unifying theory of biodiversity. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(4):639–641. doi: 10.1073/pnas.1721114115. PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Solomon M, Kendall D. Pollination by the syrphid fly, Eristalis tenax. Long Ashton Research Station Reports. 1970;1971:101–102.

South A. rworldmap: a new R package for mapping global data. The R Journal. 2011;3(1):35–43.

Speight M, Sarthou J. StN keys for the identification of the European species of various genera of Syrphidae (Diptera) 2014. Syrph the Net, the Database of European Syrphidae. 2014;80:1–125.

Spiesman BJ, Gratton C. Flexible foraging shapes the topology of plant–pollinator interaction networks. Ecology. 2016;97(6):1431–1441. doi: 10.1890/15-1735.1. PubMed DOI

Ssymank A, Gilbert F. Anemophilous pollen in the diet of Syrphid flies with special reference to the leaf feeding strategy occurring in Xylotini (Diptera, Syrphidae) Deutsche Entomologische Zeitschrift. 1993;40(2):245–258.

Ssymank A, Kearns CA, Pape T, Thompson FC. Pollinating flies (Diptera): a major contribution to plant diversity and agricultural production. Biodiversity. 2008;9(1–2):86–89. doi: 10.1080/14888386.2008.9712892. DOI

Stang M, Klinkhamer PG, Van Der Meijden E. Size constraints and flower abundance determine the number of interactions in a plant–flower visitor web. Oikos. 2006;112(1):111–121. doi: 10.1111/j.0030-1299.2006.14199.x. DOI

Stang M, Klinkhamer PG, Waser NM, Stang I, Van der Meijden E. Size-specific interaction patterns and size matching in a plant–pollinator interaction web. Annals of Botany. 2009;103(9):1459–1469. doi: 10.1093/aob/mcp027. PubMed DOI PMC

Sutherland JP, Sullivan MS, Poppy GM. The influence of floral character on the foraging behaviour of the hoverfly, Episyrphus balteatus. Entomologia Experimentalis et Applicata. 1999;93(2):157–164. doi: 10.1046/j.1570-7458.1999.00574.x. DOI

Tylianakis JM, Morris RJ. Ecological networks across environmental gradients. Annual Review of Ecology, Evolution, and Systematics. 2017;48:25–48. doi: 10.1146/annurev-ecolsys-110316-022821. DOI

Van Veen M. 2nd edition KNNV Publishing; Zeist: 2010. Hoverflies of Northwest Europe: identification keys to the Syrphidae.

Vlašánková A, Padyšáková E, Bartoš M, Mengual X, Janečková P, Janeček š. The nectar spur is not only a simple specialization for long-proboscid pollinators. New Phytologist. 2017;215(4):1574–1581. doi: 10.1111/nph.14677. PubMed DOI

Weiner CN, Werner M, Linsenmair KE, Blüthgen N. Land use intensity in grasslands: changes in biodiversity, species composition and specialisation in flower visitor networks. Basic and Applied Ecology. 2011;12(4):292–299. doi: 10.1016/j.baae.2010.08.006. DOI

Weiner CN, Werner M, Linsenmair KE, Blüthgen N. Land-use impacts on plant–pollinator networks: interaction strength and specialization predict pollinator declines. Ecology. 2014;95(2):466–474. doi: 10.1890/13-0436.1. PubMed DOI

Zu P, Schiestl FP. The effects of becoming taller: direct and pleiotropic effects of artificial selection on plant height in Brassica rapa. The Plant Journal. 2017;89(5):1009–1019. doi: 10.1111/tpj.13440. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace