RGD-coated polymeric microbubbles promote ultrasound-mediated drug delivery in an inflamed endothelium-pericyte co-culture model of the blood-brain barrier
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38498080
PubMed Central
PMC11383844
DOI
10.1007/s13346-024-01561-6
PII: 10.1007/s13346-024-01561-6
Knihovny.cz E-zdroje
- Klíčová slova
- Blood-brain barrier, Drug delivery, Microbubbles, Sonopermeation, Ultrasound,
- MeSH
- antivirové látky aplikace a dávkování chemie farmakologie farmakokinetika MeSH
- endoteliální buňky * účinky léků metabolismus MeSH
- hematoencefalická bariéra * metabolismus MeSH
- kokultivační techniky * MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- mikrobubliny * MeSH
- oligopeptidy * chemie aplikace a dávkování farmakokinetika MeSH
- pericyty * metabolismus účinky léků MeSH
- polymery chemie aplikace a dávkování MeSH
- ribavirin aplikace a dávkování chemie farmakokinetika MeSH
- ultrazvukové vlny MeSH
- zánět farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky MeSH
- arginyl-glycyl-aspartic acid MeSH Prohlížeč
- oligopeptidy * MeSH
- polymery MeSH
- ribavirin MeSH
Drug delivery to central nervous pathologies is compromised by the blood-brain barrier (BBB). A clinically explored strategy to promote drug delivery across the BBB is sonopermeation, which relies on the combined use of ultrasound (US) and microbubbles (MB) to induce temporally and spatially controlled opening of the BBB. We developed an advanced in vitro BBB model to study the impact of sonopermeation on the delivery of the prototypic polymeric drug carrier pHPMA as a larger molecule and the small molecule antiviral drug ribavirin. This was done under standard and under inflammatory conditions, employing both untargeted and RGD peptide-coated MB. The BBB model is based on human cerebral capillary endothelial cells and human placental pericytes, which are co-cultivated in transwell inserts and which present with proper transendothelial electrical resistance (TEER). Sonopermeation induced a significant decrease in TEER values and facilitated the trans-BBB delivery of fluorescently labeled pHPMA (Atto488-pHPMA). To study drug delivery under inflamed endothelial conditions, which are typical for e.g. tumors, neurodegenerative diseases and CNS infections, tumor necrosis factor (TNF) was employed to induce inflammation in the BBB model. RGD-coated MB bound to and permeabilized the inflamed endothelium-pericyte co-culture model, and potently improved Atto488-pHPMA and ribavirin delivery. Taken together, our work combines in vitro BBB bioengineering with MB-mediated drug delivery enhancement, thereby providing a framework for future studies on optimization of US-mediated drug delivery to the brain.
Electron Microscopy Facility Institute for Pathology University Clinic RWTH Aachen Aachen Germany
Institute for Experimental Molecular Imaging RWTH Aachen University Aachen Germany
Institute of Macromolecular Chemistry Czech Academy of Sciences Prague Czech Republic
QUEST Center for Responsible Research Berlin Institute of Health at Charité Berlin Germany
Zobrazit více v PubMed
Bhalerao A, Sivandzade F, Archie SR, Chowdhury EA, Noorani B, Cucullo L. In vitro modeling of the neurovascular unit: advances in the field, Fluids and Barriers of the CNS, 17 (2020). PubMed PMC
Brown LS, Foster CG, Courtney J-M, King NE, Howells DW, Sutherland BA. Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci, 13 (2019). PubMed PMC
Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15:275–92. PubMed
Stefan H, Feuerstein TJ. Novel anticonvulsant drugs. Pharmacol Ther. 2007;113:165–83. PubMed
Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: A Promising Nanocarrier for Natural Drug Delivery through Blood-Brain Barrier, Advances in Pharmacological Sciences, 2018 (2018). PubMed PMC
Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ. Pereira De Almeida, Extracellular vesicles: novel promising delivery systems for therapy of brain diseases. J Control Release. 2017;262:247–58. PubMed
Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10:7921–4. PubMed PMC
Zheng Y, Ma L, Sun Q. Clinically-relevant ABC transporter for Anti-cancer Drug Resistance. Front Pharmacol, 12 (2021). PubMed PMC
de Maar JS, Rousou C, van Elburg B, Vos HJ, Lajoinie GPR, Bos C, Moonen CTW, Deckers R. Ultrasound-mediated drug delivery with a clinical Ultrasound System: in vitro evaluation. Front Pharmacol. 2021;12:768436. PubMed PMC
Beekers I, Lattwein KR, Kouijzer JJP, Langeveld SAG, Vegter M, Beurskens R, Mastik F, Verduyn Lunel R, Verver E, van der Steen AFW, de Jong N. Kooiman, Combined Confocal Microscope and Brandaris 128 Ultra-high-speed Camera. Ultrasound Med Biol. 2019;45:2575–82. PubMed
Beekers I, Mastik F, Beurskens R, Tang PY, Vegter M, Van Der Steen AFW, De Jong N, Verweij MD, Kooiman K. High-resolution imaging of intracellular calcium fluctuations caused by oscillating Microbubbles. Ultrasound Med Biol. 2020;46:2017–29. PubMed
Beekers I, Vegter M, Lattwein KR, Mastik F, Beurskens R, Van Der Steen AFW, De Jong N, Verweij MD, Kooiman K. Opening of endothelial cell–cell contacts due to sonoporation. J Controlled Release. 2020;322:426–38. PubMed
Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER Measurement Techniques for in Vitro Barrier Model systems. J Lab Autom. 2015;20:107–26. PubMed PMC
Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62. PubMed PMC
Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, Rausch V, Blasig R, Richter M, Sporbert A, Wolburg H, Blasig IE, Haseloff RF. Tight junction proteins at the blood-brain barrier: far more than claudin-5. Cell Mol Life Sci. 2019;76:1987–2002. PubMed PMC
Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud P-O, Deli MA, Förster C, Galla HJ, Romero IA, Shusta EV, Stebbins MJ, Vandenhaute E, Weksler B, Brodin B. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metabolism. 2016;36:862–90. PubMed PMC
Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10:33. PubMed PMC
Gonzales-Aloy E, Ahmed-Cox A, Tsoli M, Ziegler DS, Kavallaris M. From cells to organoids: the evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv Drug Deliv Rev. 2023;196:114777. PubMed
Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32:1959–72. PubMed PMC
de Vries HE, Blom-Roosemalen MCM, Oosten Mv, de Boer AG, van Berkel TJC, Breimer DD, Kuiper J. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol. 1996;64:37–43. PubMed
Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, Del Zoppo GJ, Doolittle ND, Engelhardt B, Hallenbeck JM, Lonser RR, Ohlfest JR, Prat A, Scarpa M, Smeyne RJ, Drewes LR, Neuwelt EA. Immunologic privilege in the central nervous system and the blood-brain barrier. J Cereb Blood Flow Metab. 2013;33:13–21. PubMed PMC
Loh LC, Locke D, Melnychuk R, Laferté S. The RGD sequence in the cytomegalovirus DNA polymerase accessory protein can mediate cell adhesion. Virology. 2000;272:302–14. PubMed
Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715. PubMed
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding integrins revisited: how recently discovered functions and Novel Synthetic ligands (Re-)Shape an ever-evolving field. Cancers (Basel), 13 (2021). PubMed PMC
Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech. 2000;50:184–95. PubMed
Horton MA. The αvβ3 integrin vitronectin receptor. Int J Biochem Cell Biol. 1997;29:721–5. PubMed
Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol. 1996;149:293–305. PubMed PMC
Singh S, Drude N, Blank L, Desai PB, Königs H, Rütten S, Langen K-J, Möller M, Mottaghy FM, Morgenroth A. Protease responsive nanogels for transcytosis across the blood– brain barrier and intracellular delivery of Radiopharmaceuticals to Brain Tumor cells. Adv Healthc Mater. 2021;10:2100812. PubMed PMC
Snipstad S, Sulheim E, de Lange Davies C, Moonen C, Storm G, Kiessling F, Schmid R, Lammers T. Sonopermeation to improve drug delivery to tumors: from fundamental understanding to clinical translation. Expert Opin Drug Deliv. 2018;15:1249–61. PubMed
Koczera P, Appold L, Shi Y, Liu M, Dasgupta A, Pathak V, Ojha T, Fokong S, Wu Z, van Zandvoort M, Iranzo O, Kuehne AJC, Pich A, Kiessling F, Lammers T. PBCA-based polymeric microbubbles for molecular imaging and drug delivery. J Control Release. 2017;259:128–35. PubMed PMC
Marty B, Larrat B, Van Landeghem M, Robic C, Robert P, Port M, Le Bihan D, Pernot M, Tanter M, Lethimonnier F, Mériaux S. Dynamic study of blood-brain barrier closure after its disruption using ultrasound: a quantitative analysis. J Cereb Blood Flow Metab. 2012;32:1948–58. PubMed PMC
Skyba DM, Price RJ, Linka AZ, Skalak TC, Kaul S. Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation. 1998;98:290–3. PubMed
Sassaroli E, Hynynen K. Forced linear oscillations of microbubbles in blood capillaries. J Acoust Soc Am. 2004;115:3235–43. PubMed
Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Volume 11. Angiogenesis; 2008. pp. 109–19. PubMed PMC
May JN, Golombek SK, Baues M, Dasgupta A, Drude N, Rix A, Rommel D, von Stillfried S, Appold L, Pola R, Pechar M, van Bloois L, Storm G, Kuehne AJC, Gremse F, Theek B, Kiessling F, Lammers T. Multimodal and multiscale optical imaging of nanomedicine delivery across the blood-brain barrier upon sonopermeation. Theranostics. 2020;10:1948–59. PubMed PMC
Shen Y, Guo J, Chen G, Chin CT, Chen X, Chen J, Wang F, Chen S, Dan G. Delivery of liposomes with different sizes to mice Brain after Sonication by Focused Ultrasound in the Presence of Microbubbles. Ultrasound Med Biol. 2016;42:1499–511. PubMed
Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target. 2018;26:420–34. PubMed PMC
Dasgupta A, Sun T, Rama E, Motta A, Zhang Y, Power C, Moeckel D, Fletcher S-M, Moosavifar M, Barmin R, Porte C, Buhl EM, Bastard C, Pallares RM, Kiessling F, McDannold N, Mitragotri S, Lammers T. Transferrin Receptor-Targeted Nonspherical Microbubbles for Blood–Brain Barrier Sonopermeation, Advanced Materials, n/a 2308150. PubMed PMC
De Lorenzi F, Hansen N, Theek B, Daware R, Motta A, Breuel S, Nasehi R, Baumeister J, Schöneberg J, Stojanović N. Engineering Mesoscopic 3D tumor models with a Self-Organizing Vascularized Matrix. Adv Mater, (2023) 2303196. PubMed
De Lorenzi NHF, Theek B, Daware R, Motta A, Breuel S, Nasehi R, Baumeister J. Jan Schöneberg, Natalija Stojanović, Saskia Von Stillfried, Michael Vogt, Gerhard Müller-Newen, Jochen Maurer, Alexandros Marios Sofias, Twan Lammers, Horst Fischer, Fabian Kiessling, Engineering Mesoscopic 3D tumor models with a Self-Organizing Vascularized Matrix. Advanced Materials; 2023. PubMed
Boitsova EB, Morgun AV, Osipova ED, Pozhilenkova EA, Martinova GP, Frolova OV, Olovannikova RY, Tohidpour A, Gorina YV, Panina YA, Salmina AB. The inhibitory effect of LPS on the expression of GPR81 lactate receptor in blood-brain barrier model in vitro. J Neuroinflammation. 2018;15:196. PubMed PMC
Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES. Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS. 2017;14:9. PubMed PMC
Canfield SG, Stebbins MJ, Morales BS, Asai SW, Vatine GD, Svendsen CN, Palecek SP, Shusta EV. An isogenic blood–brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem. 2017;140:874–88. PubMed PMC
Fokong S, Siepmann M, Liu Z, Schmitz G, Kiessling F, Gätjens J. Advanced characterization and refinement of poly N-butyl cyanoacrylate microbubbles for ultrasound imaging. Ultrasound Med Biol. 2011;37:1622–34. PubMed
Joseph S, Gronewold TMA, Schlensog MD, Olbrich C, Quandt E, Famulok M, Schirner M. Specific targeting of ultrasound contrast agent (USCA) for diagnostic application: an in vitro feasibility study based on SAW biosensor. Biosens Bioelectron. 2005;20:1829–35. PubMed
Ojha T, Pathak V, Drude N, Weiler M, Rommel D, Rütten S, Geinitz B, van Steenbergen MJ, Storm G, Kiessling F, Lammers T. Shelf-Life evaluation and lyophilization of PBCA-Based polymeric microbubbles. Pharmaceutics. 2019;11:433. PubMed PMC
Fokong S, Theek B, Wu Z, Koczera P, Appold L, Jorge S, Resch-Genger U, van Zandvoort M, Storm G, Kiessling F, Lammers T. Image-guided, targeted and triggered drug delivery to tumors using polymer-based microbubbles. J Controlled Release. 2012;163:75–81. PubMed
Ríhová B, Jelínková M, Strohalm J, Subr V, Plocová D, Hovorka O, Novák M, Plundrová D, Germano Y, Ulbrich K. Polymeric drugs based on conjugates of synthetic and natural macromolecules. II. Anti-cancer activity of antibody or (Fab’)(2)-targeted conjugates and combined therapy with immunomodulators. J Control Release. 2000;64:241–61. PubMed
Theek B, Baues M, Gremse F, Pola R, Pechar M, Negwer I, Koynov K, Weber B, Barz M, Jahnen-Dechent W, Storm G, Kiessling F, Lammers T. Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. J Control Release. 2018;282:25–34. PubMed PMC
Slavenburg S, Huntjens-Fleuren HW, Dofferhoff TS, Richter C, Koopmans PP, Verwey-Van Wissen CP, Drenth JP, Burger DM. Ribavirin plasma concentration measurements in patients with hepatitis C: early Ribavirin concentrations predict steady-state concentrations. Ther Drug Monit. 2011;33:40–4. PubMed
Homma M, Jayewardene AL, Gambertoglio J, Aweeka F. High-performance liquid chromatographic determination of Ribavirin in whole blood to assess disposition in erythrocytes. Antimicrob Agents Chemother. 1999;43:2716–9. PubMed PMC
Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508:55–60. PubMed PMC
Tsai CJ, Nagata T, Liu CY, Suganuma T, Kanda T, Miyazaki T, Liu K, Saitoh T, Nagase H, Lazarus M, Vogt KE, Yanagisawa M, Hayashi Y. Cerebral capillary blood flow upsurge during REM sleep is mediated by A2a receptors. Cell Rep. 2021;36:109558. PubMed
Itoh Y, Suzuki N. Control of brain capillary blood flow. J Cereb Blood Flow Metab. 2012;32:1167–76. PubMed PMC
Buckley AG, Looi K, Iosifidis T, Ling K-M, Sutanto EN, Martinovich KM, Kicic-Starcevich E, Garratt LW, Shaw NC, Lannigan FJ, Larcombe AN, Zosky G, Knight DA, Rigby PJ, Kicic A, Stick SM. Visualisation of multiple tight junctional complexes in human airway epithelial cells. Biol Procedures Online. 2018;20:3. PubMed PMC
Armulik A, Genové G, Betsholtz C. Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215. PubMed
Lertkiatmongkol P, Liao D, Mei H, Hu Y, Newman PJ. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol. 2016;23:253–9. PubMed PMC
Crouch EE, Doetsch F. FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat Protoc. 2018;13:738–51. PubMed
Remesar MC, Blejer JL, Weissenbacher MC, Nejamkis MR. Ribavirin effect on experimental Junin virus-induced encephalitis. J Med Virol. 1988;26:79–84. PubMed
Bendayan R, Ronaldson PT, Gingras D, Bendayan M. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J Histochem Cytochem. 2006;54:1159–67. PubMed PMC
Muendoerfer M, Schaefer UF, Koenig P, Walk JS, Loos P, Balbach S, Eichinger T, Lehr C-M. Online monitoring of transepithelial electrical resistance (TEER) in an apparatus for combined dissolution and permeation testing. Int J Pharm. 2010;392:134–40. PubMed
Burgess A, Shah K, Hough O, Hynynen K. Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev Neurother. 2015;15:477–91. PubMed PMC
Abrahao A, Meng Y, Llinas M, Huang Y, Hamani C, Mainprize T, Aubert I, Heyn C, Black SE, Hynynen K, Lipsman N, Zinman L. First-in-human trial of blood-brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat Commun. 2019;10:4373. PubMed PMC
Mainprize T, Lipsman N, Huang Y, Meng Y, Bethune A, Ironside S, Heyn C, Alkins R, Trudeau M, Sahgal A, Perry J, Hynynen K. Blood-brain barrier opening in primary brain tumors with non-invasive MR-Guided focused Ultrasound: a clinical safety and feasibility study. Sci Rep. 2019;9:321. PubMed PMC
Pathak V, Nolte T, Rama E, Rix A, Dadfar SM, Paefgen V, Banala S, Buhl EM, Weiler M, Schulz V, Lammers T, Kiessling F. Molecular magnetic resonance imaging of Alpha-v-Beta-3 integrin expression in tumors with ultrasound microbubbles. Biomaterials. 2021;275:120896. PubMed
Idbaih A, Canney M, Belin L, Desseaux C, Vignot A, Bouchoux G, Asquier N, Law-Ye B, Leclercq D, Bissery A, De Rycke Y, Trosch C, Capelle L, Sanson M, Hoang-Xuan K, Dehais C, Houillier C, Laigle-Donadey F, Mathon B, André A, Lafon C, Chapelon JY, Delattre JY, Carpentier A. Safety and feasibility of repeated and transient blood-brain barrier disruption by Pulsed Ultrasound in patients with recurrent glioblastoma. Clin Cancer Res. 2019;25:3793–801. PubMed