Simulating human sleep spindle MEG and EEG from ion channel and circuit level dynamics

. 2019 Mar 15 ; 316 () : 46-57. [epub] 20181006

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid30300700

Grantová podpora
T32 NS061847 NINDS NIH HHS - United States
T32 MH020002 NIMH NIH HHS - United States
R01 EB009282 NIBIB NIH HHS - United States
R01 MH099645 NIMH NIH HHS - United States
RF1 MH117155 NIMH NIH HHS - United States

Odkazy

PubMed 30300700
PubMed Central PMC6380919
DOI 10.1016/j.jneumeth.2018.10.002
PII: S0165-0270(18)30310-8
Knihovny.cz E-zdroje

BACKGROUND: Although they form a unitary phenomenon, the relationship between extracranial M/EEG and transmembrane ion flows is understood only as a general principle rather than as a well-articulated and quantified causal chain. METHOD: We present an integrated multiscale model, consisting of a neural simulation of thalamus and cortex during stage N2 sleep and a biophysical model projecting cortical current densities to M/EEG fields. Sleep spindles were generated through the interactions of local and distant network connections and intrinsic currents within thalamocortical circuits. 32,652 cortical neurons were mapped onto the cortical surface reconstructed from subjects' MRI, interconnected based on geodesic distances, and scaled-up to current dipole densities based on laminar recordings in humans. MRIs were used to generate a quasi-static electromagnetic model enabling simulated cortical activity to be projected to the M/EEG sensors. RESULTS: The simulated M/EEG spindles were similar in amplitude and topography to empirical examples in the same subjects. Simulated spindles with more core-dominant activity were more MEG weighted. COMPARISON WITH EXISTING METHODS: Previous models lacked either spindle-generating thalamic neural dynamics or whole head biophysical modeling; the framework presented here is the first to simultaneously capture these disparate scales. CONCLUSIONS: This multiscale model provides a platform for the principled quantitative integration of existing information relevant to the generation of sleep spindles, and allows the implications of future findings to be explored. It provides a proof of principle for a methodological framework allowing large-scale integrative brain oscillations to be understood in terms of their underlying channels and synapses.

BioCiruits Institute University of California San Diego La Jolla CA United States

Comprehensive Epilepsy Center New York University School of Medicine New York NY United States

Department of Medicine University of California San Diego La Jolla CA United States

Department of Medicine University of California San Diego La Jolla CA United States; Institute of Computer Science Czech Academy of Sciences Prague Czech Republic

Departments of Neurosurgery Boston Children's Hospital and Harvard Medical School Boston MA United States

Epilepsy Centrum National Institute of Clinical Neurosciences Budapest Hungary

Faculty of Information Technology and Bionics Peter Pazmany Catholic University Budapest Hungary; Department of Functional Neurosurgery National Institute of Clinical Neurosciences Budapest Hungary

Institute of Cognitive Neuroscience and Psychology Hungarian Academy of Science Budapest Hungary; Faculty of Information Technology and Bionics Peter Pazmany Catholic University Budapest Hungary

Neurosciences Graduate Program University of California San Diego La Jolla CA United States

Neurosciences Graduate Program University of California San Diego La Jolla CA United States; Department of Medicine University of California San Diego La Jolla CA United States

Neurosciences Graduate Program University of California San Diego La Jolla CA United States; Department of Medicine University of California San Diego La Jolla CA United States; Departments of Neurology Massachusetts General Hospital and Harvard Medical School Boston MA United States

Neurosciences Graduate Program University of California San Diego La Jolla CA United States; Department of Radiology University of California San Diego La Jolla CA United States; Department of Neurosciences University of California San Diego La Jolla CA United States

Neurosciences Graduate Program University of California San Diego La Jolla CA United States; The Salk Institute La Jolla CA United States

Zobrazit více v PubMed

Ahlfors SP, Han J, Belliveau JW, Hämäläinen MS, 2010a. Sensitivity of MEG and EEG to source orientation. Brain Topogr 23, 227–232. 10.1007/s10548-010-0154-x PubMed DOI PMC

Ahlfors SP, Han J, Lin FH, Witzel T, Belliveau JW, Hämäläinen MS, Halgren E, 2010b. Cancellation of EEG and MEG signals generated by extended and distributed sources. Hum. Brain Mapp 31, 140–149. 10.1002/hbm.20851 PubMed DOI PMC

Akalin Acar Z, Makeig S, 2013. Effects of forward model errors on EEG source localization. Brain Topogr 26, 378–396. 10.1007/s10548-012-0274-6 PubMed DOI PMC

Andrillon T, Nir Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, Fried I, 2011. Sleep Spindles in Humans: Insights from Intracranial EEG and Unit Recordings. J. Neurosci 31, 17821–17834. 10.1523/JNEUROSCI.2604-11.2011 PubMed DOI PMC

Awada K. a, Jackson DR, Baumann SB, Williams JT, Wilton DR, Fink PW, Prasky BR, 1998. Effect of conductivity uncertainties and modeling errors on EEG source localization using a 2-D model. IEEE Trans. Biomed. Eng 45, 1135–45. 10.1109/10.709557 PubMed DOI

Balasubramanian M, Polimeni JR, Schwartz EL, 2009. Exact geodesics and shortest paths on polyhedral surfaces. IEEE Trans. Pattern Anal. Mach. Intell 31, 1006–1016. 10.1109/TPAMI.2008.213 PubMed DOI

Bazhenov M, Rulkov NF, Timofeev I, 2008. Effect of synaptic connectivity on long-range synchronization of fast cortical oscillations. J. Neurophysiol 100, 1562–1575. 10.1152/jn.90613.2008 PubMed DOI PMC

Bazhenov M, Timofeev I, Steriade M, Sejnowski T, 2000. Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks. J. Neurophysiol 84, 1076–1087. PubMed

Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ, 2002. Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. J. Neurosci 22, 8691–8704. https://doi.org/22/19/8691 [pii] PubMed PMC

Bedard C, Destexhe A, 2013. Reply to Gratiy et al. J. Neurophysiol 109, 1683–1683. 10.1152/jn.01095.2012 PubMed DOI

Bonjean M, Baker T, Bazhenov M, Cash S, Halgren E, Sejnowski T, 2012. Interactions between Core and Matrix Thalamocortical Projections in Human Sleep Spindle Synchronization. J. Neurosci 32, 5250–5263. 10.1523/JNEUROSCI.6141-11.2012 PubMed DOI PMC

Bonjean M, Baker T, Lemieux M, Timofeev I, Sejnowski T, Bazhenov M, 2011. Corticothalamic Feedback Controls Sleep Spindle Duration In Vivo. J. Neurosci 31, 9124–9134. 10.1523/JNEUROSCI.0077-11.2011 PubMed DOI PMC

Burt JB, Demirtas M, Eckner WJ, Navejar NM, Ji JL, Martin WJ, Bernacchia A, Anticevic A, Murray JD, 2017. Hierarchy of transcriptomic specialization across human cortex captured by myelin map topography. bioRxiv 199703 10.1101/199703 PubMed DOI PMC

Chen J-Y, Chauvette S, Skorheim S, Timofeev I, Bazhenov M, 2012. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation. J. Physiol 590, 3987–4010. 10.1113/jphysiol.2012.227462 PubMed DOI PMC

Cohen MX, 2017. Where Does EEG Come From and What Does It Mean? Trends Neurosci 40, 208–218. 10.1016/j.tins.2017.02.004 PubMed DOI

Cohen MX, Cavanagh JF, Slagter HA, 2011. Event-related potential activity in the basal ganglia differentiates rewards from nonrewards: Temporospatial principal components analysis and source localization of the feedback negativity: Commentary. Hum. Brain Mapp 32, 2270–2271. 10.1002/hbm.21358 PubMed DOI PMC

Contreras D, Destexhe A, Sejnowski TJ, Steriade M, 1996. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science (80-.) 274, 771–774. 10.1126/science.274.5288.771 PubMed DOI

Costa MS, Weigenand A, Ngo HVV, Marshall L, Born J, Martinetz T, Claussen JC, 2016. A Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation. PLoS Comput. Biol 12, 1–20. 10.1371/journal.pcbi.1005022 PubMed DOI PMC

Dale AM, Fischl B, Sereno MI, 1999. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–94. 10.1006/nimg.1998.0395 PubMed DOI

Dehghani N, Cash SS, Halgren E, 2011a. Emergence of synchronous EEG spindles from asynchronous MEG spindles. Hum. Brain Mapp 32, 2217–2227. 10.1002/hbm.21183 PubMed DOI PMC

Dehghani N, Cash SS, Halgren E, 2011b. Topographical frequency dynamics within EEG and MEG sleep spindles. Clin. Neurophysiol 122, 229–235. 10.1016/j.clinph.2010.06.018 PubMed DOI PMC

Dehghani N, Cash SS, Rossetti AO, Chen CC, Halgren E, 2010. Magnetoencephalography Demonstrates Multiple Asynchronous Generators During Human Sleep Spindles. J Neurophysiol 104, 179–188. 10.1152/jn.00198.2010 PubMed DOI PMC

Delorme A, Makeig S, 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21. PubMed

Destexhe A, Bal T, McCormick DA, Sejnowski TJ, 1996. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J. Neurophysiol 10.1152/jn.1996.76.3.2049 PubMed DOI

Destexhe A, Bedard C, 2012. Do neurons generate monopolar current sources? J. Neurophysiol 108, 953–955. 10.1152/jn.00357.2012 PubMed DOI

Destexhe A, Contreras D, Steriade M, 1998. Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Am. Physiol. Soc 10.1152/jn.1998.79.2.999 PubMed DOI

Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR, 1996. In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J. Neurosci 16, 169–85. 10.3961/jpmph.2008.41.6.365 PubMed DOI PMC

Diekelmann S, Born J, 2010. The memory function of sleep. Nat. Rev. Neurosci 11, 114–126. 10.1038/nrn2762 PubMed DOI

Einevoll GT, Kayser C, Logothetis NK, Panzeri S, 2013. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci 14, 770–785. 10.1038/nrn3599 PubMed DOI

Fischl B, 2012. FreeSurfer. Neuroimage 10.1016/j.neuroimage.2012.01.021 PubMed DOI PMC

Frauscher B, von Ellenrieder N, Dubeau F, Gotman J, 2015. Scalp spindles are associated with widespread intracranial activity with unexpectedly low synchrony. Neuroimage 105, 1–12. 10.1016/j.neuroimage.2014.10.048 PubMed DOI PMC

Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC, 2016. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–8. 10.1038/nature18933 PubMed DOI PMC

Gramfort A, Papadopoulo T, Olivi E, Clerc M, 2010. OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online 9, 45 10.1186/1475-925X-9-45 PubMed DOI PMC

Gratiy SL, Pettersen KH, Einevoll GT, Dale AM, 2013. Pitfalls in the interpretation of multielectrode data: on the infeasibility of the neuronal current-source monopoles. J. Neurophysiol 109, 1681–1682. 10.1152/jn.01047.2012 PubMed DOI PMC

Hagler DJ, Ulbert I, Wittner L, Eröss L, Madsen JR, Devinsky O, Doyle W, Fabo D, Cash SS, Halgren E, 2018. Heterogeneous origins of human sleep spindles in different cortical layers. J. Neurosci 38, 2241–17. 10.1523/JNEUROSCI.2241-17.2018 PubMed DOI PMC

Halgren M, Fabó D, Ulbert I, Madsen JR, Eröss L, Doyle WK, Devinsky O, Schomer D, Cash SS, Halgren E, 2018. Superficial Slow Rhythms Integrate Cortical Processing in Humans. Sci. Rep 8, 2055 10.1038/s41598-018-20662-0 PubMed DOI PMC

Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D’Asseler Y, Camilleri KP, Fabri SG, Van Huffel S, Lemahieu I, 2007. Review on solving the forward problem in EEG source analysis. J. Neuroeng. Rehabil 4, 46 10.1186/1743-0003-4-46 PubMed DOI PMC

Hämäläinen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV, 1993. Magnetoencephalography - theory, instrumentation, and applications to noninvasivee studies of the working human brain. Rev. Mod. Phys 10.1103/RevModPhys.65.413 DOI

Hämäläinen MS, Ilmoniemi RJ, 1994. Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput 32, 35–42. 10.1007/BF02512476 PubMed DOI

Huguenard JR, McCormick DA, 1992. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol 68, 1373–1383. 10.1017/CBO9781107415324.004 PubMed DOI

Huguenard JR, Prince DA, 1992. A novel T-type current underlies prolonged Ca2+-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J. Neurosci 12, 3804–3817. 10.1007/s00401-013-1221-7 PubMed DOI PMC

Iber C, Ancoli-Israel S, Chesson A, Quan S, 2007. The AASM Manual for the Scoring of Sleep and Associates Events: Rules, Terminology and Technical Specifications, Sleep (Rochester) 10.1002/ejoc.201200111 DOI

Irimia A, Van Horn JD, Halgren E, 2012. Source cancellation profiles of electroencephalography and magnetoencephalography. Neuroimage 59, 2464–2474. 10.1016/j.neuroimage.2011.08.104 PubMed DOI PMC

Jones EG, 2002. Thalamic circuitry and thalamocortical synchrony. Philos. Trans. R. Soc. B Biol. Sci 357, 1659–1673. 10.1098/rstb.2002.1168 PubMed DOI PMC

Jones EG, 2001. The thalamic matrix and thalamocortical synchrony. Trends Neurosci 10.1016/S0166-2236(00)01922-6 PubMed DOI

Klopp J, Marinkovic K, Chauvel P, Nenov V, Halgren E, 2000. Early widespread cortical distribution of coherent fusiform face selective activity. Hum. Brain Mapp 11, 286–293. PubMed PMC

Komarov M, Krishnan G, Chauvette S, Rulkov N, Timofeev I, Bazhenov M, 2017. New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics. J. Comput. Neurosci 1–24. 10.1007/s10827-017-0663-7 PubMed DOI

Krishnan GP, Chauvette S, Shamie I, Soltani S, Timofeev I, Cash SS, Halgren E, Bazhenov M, 2016. Cellular and neurochemical basis of sleep stages in the thalamocortical network. Elife 5, 1–29. 10.7554/eLife.18607 PubMed DOI PMC

Krishnan GP, González OC, Bazhenov M, 2018a. Origin of slow spontaneous resting-state neuronal fluctuations in brain networks. Proc. Natl. Acad. Sci 201715841. 10.1073/pnas.1715841115 PubMed DOI PMC

Krishnan GP, Rosen BQ, Chen J-Y, Muller L, Sejnowski TJ, Cash SS, Halgren E, Bazhenov M, 2018b. Thalamocortical and intracortical laminar connectivity determines sleep spindle properties. PLoS Comput. Biol 14, 1–22. 10.1371/journal.pcbi.1006171 PubMed DOI PMC

Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulo T, 2005. A common formalism for the integral formulations of the forward EEG problem. IEEE Trans. Med. Imaging 24, 12–28. 10.1109/TMI.2004.837363 PubMed DOI

Lindén H, Hagen E, Lęski S, Norheim ES, Pettersen KH, Einevoll GT, 2014. LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front. Neuroinform 10.3389/fninf.2013.00041 PubMed DOI PMC

Linden H, Tetzlaff T, Potjans TC, Pettersen KH, Grun S, Diesmann M, Einevoll GT, 2011. Modeling the spatial reach of the LFP. Neuron 72, 859–872. 10.1016/j.neuron.2011.11.006 PubMed DOI

Lopes da Silva F, 2013. EEG and MEG: Relevance to neuroscience. Neuron 80, 1112–1128. 10.1016/j.neuron.2013.10.017 PubMed DOI

Lopes Da Silva F, 2004. Functional localization of brain sources using EEG and/or MEG data: Volume conductor and source models, in: Magnetic Resonance Imaging pp. 1533–1538. 10.1016/j.mri.2004.10.010 PubMed DOI

Lutkenhoner B, 2003. Magnetoencephalography and its Achilles’ heel, in: Journal of Physiology Paris pp. 641–658. 10.1016/j.jphysparis.2004.01.020 PubMed DOI

Mak-McCully R. a, Rosen BQ, Rolland M, Régis J, Bartolomei F, Rey M, Chauvel P, Cash SS, Halgren E, 2015. Distribution, Amplitude, Incidence, Co-Occurrence, and Propagation of Human K-Complexes in Focal Transcortical Recordings(1,2,3). eNeuro 2, 3 10.1523/ENEURO.0028-15.2015 PubMed DOI PMC

Mak-McCully RA, Deiss SR, Rosen BQ, Jung KY, Sejnowski TJ, Bastuji H, Rey M, Cash SS, Bazhenov M, Halgren E, 2014. Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling. PLoS Comput. Biol 10 10.1371/journal.pcbi.1003855 PubMed DOI PMC

Mak-Mccully RA, Rolland M, Sargsyan A, Gonzalez C, Magnin M, Chauvel P, Rey M, Bastuji H, Halgren E, 2017. Coordination of cortical and thalamic activity during non-REM sleep in humans. Nat. Commun 8 10.1038/ncomms15499 PubMed DOI PMC

Manoach DS, Pan JQ, Purcell SM, Stickgold R, 2016. Reduced Sleep Spindles in Schizophrenia: A Treatable Endophenotype That Links Risk Genes to Impaired Cognition? Biol. Psychiatry 80, 599–608. 10.1016/j.biopsych.2015.10.003 PubMed DOI PMC

Manshanden I, De Munck JC, Simon NR, Lopes da Silva FH, 2002. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clin. Neurophysiol 113, 1937–1947. 10.1016/S1388-2457(02)00304-8 PubMed DOI

Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H, 2014. Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol 522, 225–259. 10.1002/cne.23458 PubMed DOI PMC

Markram H, 2006. The Blue Brain Project. Nat. Rev. Neurosci 10.1038/nrn1848 PubMed DOI

McCormick DA, Pape HC, 1990. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol 431, 291–318. 10.1113/jphysiol.1990.sp018331 PubMed DOI PMC

Meyer M, Desbrun M, Schröder P, Barr AH, 2003. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds pp. 35–57. 10.1007/978-3-662-05105-4_2 DOI

Muller L, Piantoni G, Koller D, Cash SS, Halgren E, Sejnowski TJ, 2016. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night. Elife 5, 1–16. 10.7554/eLife.17267.001 PubMed DOI PMC

Murakami S, Okada Y, 2015. Invariance in current dipole moment density across brain structures and species: Physiological constraint for neuroimaging. Neuroimage 111, 49–58. 10.1016/j.neuroimage.2015.02.003 PubMed DOI PMC

Nunez PL, Srinivasan R, 2009. Electric Fields of the Brain: The neurophysics of EEG, Electric Fields of the Brain: The neurophysics of EEG 10.1093/acprof:oso/9780195050387.001.0001 DOI

Oostenveld R, Fries P, Maris E, Schoffelen J-M, 2011. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci 2011, 156869 10.1155/2011/156869 PubMed DOI PMC

Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT, 2006. Current-source density estimation based on inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conductivity discontinuities. J. Neurosci. Methods 154, 116–133. 10.1016/j.jneumeth.2005.12.005 PubMed DOI

Piantoni G, Halgren E, Cash SS, 2016. Spatiotemporal Characteristics of Sleep Spindles Depend on Cortical Location. Neuroimage 146, 236–245. 10.1016/j.neuroimage.2016.11.010 PubMed DOI PMC

Riera JJ, Ogawa T, Goto T, Sumiyoshi A, Nonaka H, Evans A, Miyakawa H, Kawashima R, 2012. Pitfalls in the dipolar model for the neocortical EEG sources. J. Neurophysiol 108, 956–975. 10.1152/jn.00098.2011 PubMed DOI

Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, Lee P, Bulik-Sullivan B, Collier DA, Huang H, 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421. PubMed PMC

Ritter P, Schirner M, McIntosh AR, Jirsa VK, 2013. The virtual brain integrates computational modeling and multimodal neuroimaging. Brain Connect 3, 121–145. 10.1089/brain.2012.0120 PubMed DOI PMC

Rulkov NF, Bazhenov M, 2008. Oscillations and synchrony in large-scale cortical network models. J. Biol. Phys 34, 279–299. 10.1007/s10867-008-9079-y PubMed DOI PMC

Rulkov NF, Timofeev I, Bazhenov M, 2004. Oscillations in Large-Scale Cortical Networks : Map-Based Model. J. Comput. Neurosci 17, 203–223. PubMed

Sejnowski TJ, Destexhe A, 2000. Why do we sleep? Brain Res 886, 208–223. 10.1016/S0006-8993(00)03007-9 PubMed DOI

Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud G, Duff E, Feinberg DA, Griffanti L, Harms MP, Kelly M, Laumann T, Miller KL, Moeller S, Petersen S, Power J, Salimi-Khorshidi G, Snyder AZ, Vu AT, Woolrich MW, Xu J, Yacoub E, Ugurbil K, Van Essen DC, Glasser MF, 2013. Resting-state fMRI in the Human Connectome Project. Neuroimage 80, 144–168. 10.1016/j.neuroimage.2013.05.039 PubMed DOI PMC

Steriade M, McCormick D, Sejnowski T, 1993. Thalamocortical oscillations in the sleeping and aroused brain. Science (80-.) 262, 679–685. 10.1126/science.8235588 PubMed DOI

Stevens CF, 1993. Quantal release of neurotransmitter and long-term potentiation. Cell 10.1016/S0092-8674(05)80028-5 PubMed DOI

Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M, 2001. Contribution of intrinsic and synaptic factors in the desynchronization of thalamic oscillatory activity. Thalamus Relat. Syst 1, 53–69. 10.1016/S1472-9288(01)00004-8 DOI

Timofeev I, F. G, Bazhenov M, Sejnowski TJ, Steriade M, 2000. Origin of Slow Cortical Oscillations in Deafferented Cortical Slabs. Cereb. Cortex 10, 1185–1199. 10.1093/cercor/10.12.1185 PubMed DOI

sodyks MV, Markram H, 1997. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci 94, 719–723. PubMed PMC

Ulbert I, Halgren E, Heit G, Karmos G, 2001. Multiple microelectrode-recording system for human intracortical applications. J. Neurosci. Methods 106, 69–79. 10.1016/S0165-0270(01)00330-2 PubMed DOI

Uutela K, Taulu S, Hämäläinen M, 2001. Detecting and correcting for head movements in neuromagnetic measurements. Neuroimage 14, 1424–1431. 10.1006/nimg.2001.0915 PubMed DOI

van den Heuvel MP, Sporns O, 2013. An Anatomical Substrate for Integration among Functional Networks in Human Cortex. J. Neurosci 33, 14489–14500. 10.1523/JNEUROSCI.2128-13.2013 PubMed DOI PMC

Wamsley EJ, Tucker MA, Shinn AK, Ono KE, McKinley SK, Ely AV, Goff DC, Stickgold R, Manoach DS, 2012. Reduced sleep spindles and spindle coherence in schizophrenia: Mechanisms of impaired memory consolidation? Biol. Psychiatry 71, 154–161. 10.1016/j.biopsych.2011.08.008 PubMed DOI PMC

Wei Y, Krishnan GP, Bazhenov M, 2016. Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations. J. Neurosci 36, 4231–4247. 10.1523/JNEUROSCI.3648-15.2016 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Python/NEURON code for simulating biophysically realistic thalamocortical dynamics during sleep

. 2024 Sep ; 21 () : . [epub] 20240603

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...