Simulating human sleep spindle MEG and EEG from ion channel and circuit level dynamics
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
T32 NS061847
NINDS NIH HHS - United States
T32 MH020002
NIMH NIH HHS - United States
R01 EB009282
NIBIB NIH HHS - United States
R01 MH099645
NIMH NIH HHS - United States
RF1 MH117155
NIMH NIH HHS - United States
PubMed
30300700
PubMed Central
PMC6380919
DOI
10.1016/j.jneumeth.2018.10.002
PII: S0165-0270(18)30310-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cortex, EEG, Forward model, Human, MEG, Sleep, Spindle, Thalamus,
- MeSH
- biologické modely * MeSH
- dospělí MeSH
- elektroencefalografie * MeSH
- iontové kanály MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- magnetoencefalografie * MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozková kůra * MeSH
- nervová síť MeSH
- počítačová simulace MeSH
- stadia spánku * MeSH
- thalamus * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- iontové kanály MeSH
BACKGROUND: Although they form a unitary phenomenon, the relationship between extracranial M/EEG and transmembrane ion flows is understood only as a general principle rather than as a well-articulated and quantified causal chain. METHOD: We present an integrated multiscale model, consisting of a neural simulation of thalamus and cortex during stage N2 sleep and a biophysical model projecting cortical current densities to M/EEG fields. Sleep spindles were generated through the interactions of local and distant network connections and intrinsic currents within thalamocortical circuits. 32,652 cortical neurons were mapped onto the cortical surface reconstructed from subjects' MRI, interconnected based on geodesic distances, and scaled-up to current dipole densities based on laminar recordings in humans. MRIs were used to generate a quasi-static electromagnetic model enabling simulated cortical activity to be projected to the M/EEG sensors. RESULTS: The simulated M/EEG spindles were similar in amplitude and topography to empirical examples in the same subjects. Simulated spindles with more core-dominant activity were more MEG weighted. COMPARISON WITH EXISTING METHODS: Previous models lacked either spindle-generating thalamic neural dynamics or whole head biophysical modeling; the framework presented here is the first to simultaneously capture these disparate scales. CONCLUSIONS: This multiscale model provides a platform for the principled quantitative integration of existing information relevant to the generation of sleep spindles, and allows the implications of future findings to be explored. It provides a proof of principle for a methodological framework allowing large-scale integrative brain oscillations to be understood in terms of their underlying channels and synapses.
BioCiruits Institute University of California San Diego La Jolla CA United States
Comprehensive Epilepsy Center New York University School of Medicine New York NY United States
Department of Medicine University of California San Diego La Jolla CA United States
Epilepsy Centrum National Institute of Clinical Neurosciences Budapest Hungary
Neurosciences Graduate Program University of California San Diego La Jolla CA United States
Zobrazit více v PubMed
Ahlfors SP, Han J, Belliveau JW, Hämäläinen MS, 2010a. Sensitivity of MEG and EEG to source orientation. Brain Topogr 23, 227–232. 10.1007/s10548-010-0154-x PubMed DOI PMC
Ahlfors SP, Han J, Lin FH, Witzel T, Belliveau JW, Hämäläinen MS, Halgren E, 2010b. Cancellation of EEG and MEG signals generated by extended and distributed sources. Hum. Brain Mapp 31, 140–149. 10.1002/hbm.20851 PubMed DOI PMC
Akalin Acar Z, Makeig S, 2013. Effects of forward model errors on EEG source localization. Brain Topogr 26, 378–396. 10.1007/s10548-012-0274-6 PubMed DOI PMC
Andrillon T, Nir Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, Fried I, 2011. Sleep Spindles in Humans: Insights from Intracranial EEG and Unit Recordings. J. Neurosci 31, 17821–17834. 10.1523/JNEUROSCI.2604-11.2011 PubMed DOI PMC
Awada K. a, Jackson DR, Baumann SB, Williams JT, Wilton DR, Fink PW, Prasky BR, 1998. Effect of conductivity uncertainties and modeling errors on EEG source localization using a 2-D model. IEEE Trans. Biomed. Eng 45, 1135–45. 10.1109/10.709557 PubMed DOI
Balasubramanian M, Polimeni JR, Schwartz EL, 2009. Exact geodesics and shortest paths on polyhedral surfaces. IEEE Trans. Pattern Anal. Mach. Intell 31, 1006–1016. 10.1109/TPAMI.2008.213 PubMed DOI
Bazhenov M, Rulkov NF, Timofeev I, 2008. Effect of synaptic connectivity on long-range synchronization of fast cortical oscillations. J. Neurophysiol 100, 1562–1575. 10.1152/jn.90613.2008 PubMed DOI PMC
Bazhenov M, Timofeev I, Steriade M, Sejnowski T, 2000. Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks. J. Neurophysiol 84, 1076–1087. PubMed
Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ, 2002. Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. J. Neurosci 22, 8691–8704. https://doi.org/22/19/8691 [pii] PubMed PMC
Bedard C, Destexhe A, 2013. Reply to Gratiy et al. J. Neurophysiol 109, 1683–1683. 10.1152/jn.01095.2012 PubMed DOI
Bonjean M, Baker T, Bazhenov M, Cash S, Halgren E, Sejnowski T, 2012. Interactions between Core and Matrix Thalamocortical Projections in Human Sleep Spindle Synchronization. J. Neurosci 32, 5250–5263. 10.1523/JNEUROSCI.6141-11.2012 PubMed DOI PMC
Bonjean M, Baker T, Lemieux M, Timofeev I, Sejnowski T, Bazhenov M, 2011. Corticothalamic Feedback Controls Sleep Spindle Duration In Vivo. J. Neurosci 31, 9124–9134. 10.1523/JNEUROSCI.0077-11.2011 PubMed DOI PMC
Burt JB, Demirtas M, Eckner WJ, Navejar NM, Ji JL, Martin WJ, Bernacchia A, Anticevic A, Murray JD, 2017. Hierarchy of transcriptomic specialization across human cortex captured by myelin map topography. bioRxiv 199703 10.1101/199703 PubMed DOI PMC
Chen J-Y, Chauvette S, Skorheim S, Timofeev I, Bazhenov M, 2012. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation. J. Physiol 590, 3987–4010. 10.1113/jphysiol.2012.227462 PubMed DOI PMC
Cohen MX, 2017. Where Does EEG Come From and What Does It Mean? Trends Neurosci 40, 208–218. 10.1016/j.tins.2017.02.004 PubMed DOI
Cohen MX, Cavanagh JF, Slagter HA, 2011. Event-related potential activity in the basal ganglia differentiates rewards from nonrewards: Temporospatial principal components analysis and source localization of the feedback negativity: Commentary. Hum. Brain Mapp 32, 2270–2271. 10.1002/hbm.21358 PubMed DOI PMC
Contreras D, Destexhe A, Sejnowski TJ, Steriade M, 1996. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science (80-.) 274, 771–774. 10.1126/science.274.5288.771 PubMed DOI
Costa MS, Weigenand A, Ngo HVV, Marshall L, Born J, Martinetz T, Claussen JC, 2016. A Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation. PLoS Comput. Biol 12, 1–20. 10.1371/journal.pcbi.1005022 PubMed DOI PMC
Dale AM, Fischl B, Sereno MI, 1999. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–94. 10.1006/nimg.1998.0395 PubMed DOI
Dehghani N, Cash SS, Halgren E, 2011a. Emergence of synchronous EEG spindles from asynchronous MEG spindles. Hum. Brain Mapp 32, 2217–2227. 10.1002/hbm.21183 PubMed DOI PMC
Dehghani N, Cash SS, Halgren E, 2011b. Topographical frequency dynamics within EEG and MEG sleep spindles. Clin. Neurophysiol 122, 229–235. 10.1016/j.clinph.2010.06.018 PubMed DOI PMC
Dehghani N, Cash SS, Rossetti AO, Chen CC, Halgren E, 2010. Magnetoencephalography Demonstrates Multiple Asynchronous Generators During Human Sleep Spindles. J Neurophysiol 104, 179–188. 10.1152/jn.00198.2010 PubMed DOI PMC
Delorme A, Makeig S, 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21. PubMed
Destexhe A, Bal T, McCormick DA, Sejnowski TJ, 1996. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J. Neurophysiol 10.1152/jn.1996.76.3.2049 PubMed DOI
Destexhe A, Bedard C, 2012. Do neurons generate monopolar current sources? J. Neurophysiol 108, 953–955. 10.1152/jn.00357.2012 PubMed DOI
Destexhe A, Contreras D, Steriade M, 1998. Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Am. Physiol. Soc 10.1152/jn.1998.79.2.999 PubMed DOI
Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR, 1996. In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J. Neurosci 16, 169–85. 10.3961/jpmph.2008.41.6.365 PubMed DOI PMC
Diekelmann S, Born J, 2010. The memory function of sleep. Nat. Rev. Neurosci 11, 114–126. 10.1038/nrn2762 PubMed DOI
Einevoll GT, Kayser C, Logothetis NK, Panzeri S, 2013. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci 14, 770–785. 10.1038/nrn3599 PubMed DOI
Fischl B, 2012. FreeSurfer. Neuroimage 10.1016/j.neuroimage.2012.01.021 PubMed DOI PMC
Frauscher B, von Ellenrieder N, Dubeau F, Gotman J, 2015. Scalp spindles are associated with widespread intracranial activity with unexpectedly low synchrony. Neuroimage 105, 1–12. 10.1016/j.neuroimage.2014.10.048 PubMed DOI PMC
Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC, 2016. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–8. 10.1038/nature18933 PubMed DOI PMC
Gramfort A, Papadopoulo T, Olivi E, Clerc M, 2010. OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online 9, 45 10.1186/1475-925X-9-45 PubMed DOI PMC
Gratiy SL, Pettersen KH, Einevoll GT, Dale AM, 2013. Pitfalls in the interpretation of multielectrode data: on the infeasibility of the neuronal current-source monopoles. J. Neurophysiol 109, 1681–1682. 10.1152/jn.01047.2012 PubMed DOI PMC
Hagler DJ, Ulbert I, Wittner L, Eröss L, Madsen JR, Devinsky O, Doyle W, Fabo D, Cash SS, Halgren E, 2018. Heterogeneous origins of human sleep spindles in different cortical layers. J. Neurosci 38, 2241–17. 10.1523/JNEUROSCI.2241-17.2018 PubMed DOI PMC
Halgren M, Fabó D, Ulbert I, Madsen JR, Eröss L, Doyle WK, Devinsky O, Schomer D, Cash SS, Halgren E, 2018. Superficial Slow Rhythms Integrate Cortical Processing in Humans. Sci. Rep 8, 2055 10.1038/s41598-018-20662-0 PubMed DOI PMC
Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D’Asseler Y, Camilleri KP, Fabri SG, Van Huffel S, Lemahieu I, 2007. Review on solving the forward problem in EEG source analysis. J. Neuroeng. Rehabil 4, 46 10.1186/1743-0003-4-46 PubMed DOI PMC
Hämäläinen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV, 1993. Magnetoencephalography - theory, instrumentation, and applications to noninvasivee studies of the working human brain. Rev. Mod. Phys 10.1103/RevModPhys.65.413 DOI
Hämäläinen MS, Ilmoniemi RJ, 1994. Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput 32, 35–42. 10.1007/BF02512476 PubMed DOI
Huguenard JR, McCormick DA, 1992. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol 68, 1373–1383. 10.1017/CBO9781107415324.004 PubMed DOI
Huguenard JR, Prince DA, 1992. A novel T-type current underlies prolonged Ca2+-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J. Neurosci 12, 3804–3817. 10.1007/s00401-013-1221-7 PubMed DOI PMC
Iber C, Ancoli-Israel S, Chesson A, Quan S, 2007. The AASM Manual for the Scoring of Sleep and Associates Events: Rules, Terminology and Technical Specifications, Sleep (Rochester) 10.1002/ejoc.201200111 DOI
Irimia A, Van Horn JD, Halgren E, 2012. Source cancellation profiles of electroencephalography and magnetoencephalography. Neuroimage 59, 2464–2474. 10.1016/j.neuroimage.2011.08.104 PubMed DOI PMC
Jones EG, 2002. Thalamic circuitry and thalamocortical synchrony. Philos. Trans. R. Soc. B Biol. Sci 357, 1659–1673. 10.1098/rstb.2002.1168 PubMed DOI PMC
Jones EG, 2001. The thalamic matrix and thalamocortical synchrony. Trends Neurosci 10.1016/S0166-2236(00)01922-6 PubMed DOI
Klopp J, Marinkovic K, Chauvel P, Nenov V, Halgren E, 2000. Early widespread cortical distribution of coherent fusiform face selective activity. Hum. Brain Mapp 11, 286–293. PubMed PMC
Komarov M, Krishnan G, Chauvette S, Rulkov N, Timofeev I, Bazhenov M, 2017. New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics. J. Comput. Neurosci 1–24. 10.1007/s10827-017-0663-7 PubMed DOI
Krishnan GP, Chauvette S, Shamie I, Soltani S, Timofeev I, Cash SS, Halgren E, Bazhenov M, 2016. Cellular and neurochemical basis of sleep stages in the thalamocortical network. Elife 5, 1–29. 10.7554/eLife.18607 PubMed DOI PMC
Krishnan GP, González OC, Bazhenov M, 2018a. Origin of slow spontaneous resting-state neuronal fluctuations in brain networks. Proc. Natl. Acad. Sci 201715841. 10.1073/pnas.1715841115 PubMed DOI PMC
Krishnan GP, Rosen BQ, Chen J-Y, Muller L, Sejnowski TJ, Cash SS, Halgren E, Bazhenov M, 2018b. Thalamocortical and intracortical laminar connectivity determines sleep spindle properties. PLoS Comput. Biol 14, 1–22. 10.1371/journal.pcbi.1006171 PubMed DOI PMC
Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulo T, 2005. A common formalism for the integral formulations of the forward EEG problem. IEEE Trans. Med. Imaging 24, 12–28. 10.1109/TMI.2004.837363 PubMed DOI
Lindén H, Hagen E, Lęski S, Norheim ES, Pettersen KH, Einevoll GT, 2014. LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front. Neuroinform 10.3389/fninf.2013.00041 PubMed DOI PMC
Linden H, Tetzlaff T, Potjans TC, Pettersen KH, Grun S, Diesmann M, Einevoll GT, 2011. Modeling the spatial reach of the LFP. Neuron 72, 859–872. 10.1016/j.neuron.2011.11.006 PubMed DOI
Lopes da Silva F, 2013. EEG and MEG: Relevance to neuroscience. Neuron 80, 1112–1128. 10.1016/j.neuron.2013.10.017 PubMed DOI
Lopes Da Silva F, 2004. Functional localization of brain sources using EEG and/or MEG data: Volume conductor and source models, in: Magnetic Resonance Imaging pp. 1533–1538. 10.1016/j.mri.2004.10.010 PubMed DOI
Lutkenhoner B, 2003. Magnetoencephalography and its Achilles’ heel, in: Journal of Physiology Paris pp. 641–658. 10.1016/j.jphysparis.2004.01.020 PubMed DOI
Mak-McCully R. a, Rosen BQ, Rolland M, Régis J, Bartolomei F, Rey M, Chauvel P, Cash SS, Halgren E, 2015. Distribution, Amplitude, Incidence, Co-Occurrence, and Propagation of Human K-Complexes in Focal Transcortical Recordings(1,2,3). eNeuro 2, 3 10.1523/ENEURO.0028-15.2015 PubMed DOI PMC
Mak-McCully RA, Deiss SR, Rosen BQ, Jung KY, Sejnowski TJ, Bastuji H, Rey M, Cash SS, Bazhenov M, Halgren E, 2014. Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling. PLoS Comput. Biol 10 10.1371/journal.pcbi.1003855 PubMed DOI PMC
Mak-Mccully RA, Rolland M, Sargsyan A, Gonzalez C, Magnin M, Chauvel P, Rey M, Bastuji H, Halgren E, 2017. Coordination of cortical and thalamic activity during non-REM sleep in humans. Nat. Commun 8 10.1038/ncomms15499 PubMed DOI PMC
Manoach DS, Pan JQ, Purcell SM, Stickgold R, 2016. Reduced Sleep Spindles in Schizophrenia: A Treatable Endophenotype That Links Risk Genes to Impaired Cognition? Biol. Psychiatry 80, 599–608. 10.1016/j.biopsych.2015.10.003 PubMed DOI PMC
Manshanden I, De Munck JC, Simon NR, Lopes da Silva FH, 2002. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clin. Neurophysiol 113, 1937–1947. 10.1016/S1388-2457(02)00304-8 PubMed DOI
Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H, 2014. Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol 522, 225–259. 10.1002/cne.23458 PubMed DOI PMC
Markram H, 2006. The Blue Brain Project. Nat. Rev. Neurosci 10.1038/nrn1848 PubMed DOI
McCormick DA, Pape HC, 1990. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol 431, 291–318. 10.1113/jphysiol.1990.sp018331 PubMed DOI PMC
Meyer M, Desbrun M, Schröder P, Barr AH, 2003. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds pp. 35–57. 10.1007/978-3-662-05105-4_2 DOI
Muller L, Piantoni G, Koller D, Cash SS, Halgren E, Sejnowski TJ, 2016. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night. Elife 5, 1–16. 10.7554/eLife.17267.001 PubMed DOI PMC
Murakami S, Okada Y, 2015. Invariance in current dipole moment density across brain structures and species: Physiological constraint for neuroimaging. Neuroimage 111, 49–58. 10.1016/j.neuroimage.2015.02.003 PubMed DOI PMC
Nunez PL, Srinivasan R, 2009. Electric Fields of the Brain: The neurophysics of EEG, Electric Fields of the Brain: The neurophysics of EEG 10.1093/acprof:oso/9780195050387.001.0001 DOI
Oostenveld R, Fries P, Maris E, Schoffelen J-M, 2011. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci 2011, 156869 10.1155/2011/156869 PubMed DOI PMC
Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT, 2006. Current-source density estimation based on inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conductivity discontinuities. J. Neurosci. Methods 154, 116–133. 10.1016/j.jneumeth.2005.12.005 PubMed DOI
Piantoni G, Halgren E, Cash SS, 2016. Spatiotemporal Characteristics of Sleep Spindles Depend on Cortical Location. Neuroimage 146, 236–245. 10.1016/j.neuroimage.2016.11.010 PubMed DOI PMC
Riera JJ, Ogawa T, Goto T, Sumiyoshi A, Nonaka H, Evans A, Miyakawa H, Kawashima R, 2012. Pitfalls in the dipolar model for the neocortical EEG sources. J. Neurophysiol 108, 956–975. 10.1152/jn.00098.2011 PubMed DOI
Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, Lee P, Bulik-Sullivan B, Collier DA, Huang H, 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421. PubMed PMC
Ritter P, Schirner M, McIntosh AR, Jirsa VK, 2013. The virtual brain integrates computational modeling and multimodal neuroimaging. Brain Connect 3, 121–145. 10.1089/brain.2012.0120 PubMed DOI PMC
Rulkov NF, Bazhenov M, 2008. Oscillations and synchrony in large-scale cortical network models. J. Biol. Phys 34, 279–299. 10.1007/s10867-008-9079-y PubMed DOI PMC
Rulkov NF, Timofeev I, Bazhenov M, 2004. Oscillations in Large-Scale Cortical Networks : Map-Based Model. J. Comput. Neurosci 17, 203–223. PubMed
Sejnowski TJ, Destexhe A, 2000. Why do we sleep? Brain Res 886, 208–223. 10.1016/S0006-8993(00)03007-9 PubMed DOI
Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud G, Duff E, Feinberg DA, Griffanti L, Harms MP, Kelly M, Laumann T, Miller KL, Moeller S, Petersen S, Power J, Salimi-Khorshidi G, Snyder AZ, Vu AT, Woolrich MW, Xu J, Yacoub E, Ugurbil K, Van Essen DC, Glasser MF, 2013. Resting-state fMRI in the Human Connectome Project. Neuroimage 80, 144–168. 10.1016/j.neuroimage.2013.05.039 PubMed DOI PMC
Steriade M, McCormick D, Sejnowski T, 1993. Thalamocortical oscillations in the sleeping and aroused brain. Science (80-.) 262, 679–685. 10.1126/science.8235588 PubMed DOI
Stevens CF, 1993. Quantal release of neurotransmitter and long-term potentiation. Cell 10.1016/S0092-8674(05)80028-5 PubMed DOI
Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M, 2001. Contribution of intrinsic and synaptic factors in the desynchronization of thalamic oscillatory activity. Thalamus Relat. Syst 1, 53–69. 10.1016/S1472-9288(01)00004-8 DOI
Timofeev I, F. G, Bazhenov M, Sejnowski TJ, Steriade M, 2000. Origin of Slow Cortical Oscillations in Deafferented Cortical Slabs. Cereb. Cortex 10, 1185–1199. 10.1093/cercor/10.12.1185 PubMed DOI
sodyks MV, Markram H, 1997. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci 94, 719–723. PubMed PMC
Ulbert I, Halgren E, Heit G, Karmos G, 2001. Multiple microelectrode-recording system for human intracortical applications. J. Neurosci. Methods 106, 69–79. 10.1016/S0165-0270(01)00330-2 PubMed DOI
Uutela K, Taulu S, Hämäläinen M, 2001. Detecting and correcting for head movements in neuromagnetic measurements. Neuroimage 14, 1424–1431. 10.1006/nimg.2001.0915 PubMed DOI
van den Heuvel MP, Sporns O, 2013. An Anatomical Substrate for Integration among Functional Networks in Human Cortex. J. Neurosci 33, 14489–14500. 10.1523/JNEUROSCI.2128-13.2013 PubMed DOI PMC
Wamsley EJ, Tucker MA, Shinn AK, Ono KE, McKinley SK, Ely AV, Goff DC, Stickgold R, Manoach DS, 2012. Reduced sleep spindles and spindle coherence in schizophrenia: Mechanisms of impaired memory consolidation? Biol. Psychiatry 71, 154–161. 10.1016/j.biopsych.2011.08.008 PubMed DOI PMC
Wei Y, Krishnan GP, Bazhenov M, 2016. Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations. J. Neurosci 36, 4231–4247. 10.1523/JNEUROSCI.3648-15.2016 PubMed DOI PMC