Temperature during pupal development affects hoverfly developmental time, adult life span, and wing length

. 2023 Oct ; 13 (10) : e10516. [epub] 20231024

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37881229

Hoverflies (Diptera, Syrphidae) are cosmopolitan, generalist flower visitors and among the most important pollinators after bees and bumblebees. The dronefly Eristalis tenax can be found in temperate and continental climates across the globe, often synanthropically. Eristalis tenax pupae of different generations and different climate zones are thus exposed to vastly different temperatures. In many insects, the ambient temperature during the pupal stage affects development, adult size, and survival; however, the effect of developmental temperature on these traits in hoverflies is comparatively poorly understood. We here reared E. tenax pupae at different temperatures, from 10°C to 25°C, and quantified the effect on adult hoverflies. We found that pupal rearing at 17°C appeared to be optimal, with high eclosion rates, longer wings, and increased adult longevity. Rearing temperatures above or below this optimum led to decreased eclosion rates, wing size, and adult survival. Similar thermal dependence has been observed in other insects. We found that rearing temperature had no significant effect on locomotor activity, coloration or weight, despite evidence of strong sexual dimorphism for each of these traits. Our findings are important as hoverflies are key pollinators, and understanding the effects of developmental temperature could potentially be useful for horticulture.

Zobrazit více v PubMed

Angilletta, M. J., Jr. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press.

Angilletta, M. J. , Niewiarowski, P. H. , & Navas, C. A. (2002). The evolution of thermal physiology in ectotherms. Journal of Thermal Biology, 27, 249–268.

Arambourou, H. , Sanmartín‐Villar, I. , & Stoks, R. (2017). Wing shape‐mediated carry‐over effects of a heat wave during the larval stage on post‐metamorphic locomotor ability. Oecologia, 184, 279–291. PubMed

Atkins, E. L. J. (1948). Mimicry between the drone‐fly,

Atkinson, D. (1994). In Begon M. & Fitter A. H. (Eds.), Temperature and organism size – A biological law for ectotherms? Advances in ecological research (pp. 1–58). Academic Press.

Bahrndorff, S. , Gertsen, S. , Pertoldi, C. , & Kristensen, T. N. (2016). Investigating thermal acclimation effects before and after a cold shock in

Berrigan, D. , & Partridge, L. (1997). Influence of temperature and activity on the metabolic rate of adult PubMed

Bortolini, S. , Macavei, L. I. , Saadoun, J. H. , Foca, G. , Ulrici, A. , Bernini, F. , Malferrari, D. , Setti, L. , Ronga, D. , & Maistrello, L. (2020).

Carter, A. W. , & Sheldon, K. S. (2020). Life stages differ in plasticity to temperature fluctuations and uniquely contribute to adult phenotype in PubMed

Cook, D. F. , Voss, S. C. , Finch, J. T. D. , Rader, R. C. , Cook, J. M. , & Spurr, C. J. (2020). The role of flies as pollinators of horticultural crops: An Australian case study with worldwide relevance. Insects, 11, 341. PubMed PMC

Dolley, W. L., Jr. , & Golden, L. H. (1947). The effect of sex and age on the temperature at which reversal in reaction to light in PubMed

Dolley, W. L., Jr. , & White, J. D. (1951). The effect of illuminance on the reversal temperature in the drone fly, PubMed

Doyle, T. , Hawkes, W. L. S. , Massy, R. , Powney, G. D. , Menz, M. H. M. , & Wotton, K. R. (2020). Pollination by hoverflies in the Anthropocene. Proceedings of the Royal Society of London B, 287, 20200508. PubMed PMC

Ezeakacha, N. F. , & Yee, D. A. (2019). The role of temperature in affecting carry‐over effects and larval competition in the globally invasive mosquito PubMed PMC

Forsman, A. (2011). Rethinking the thermal melanism hypothesis: Rearing temperature and coloration in pygmy grasshoppers. Evolutionary Ecology, 25, 1247–1257.

Francuski, L. , Djurakic, M. , Ludoski, J. , Hurtado, P. , Perez‐Banon, C. , Stahls, G. , Rojo, S. , & Milankov, V. (2014). Shift in phenotypic variation coupled with rapid loss of genetic diversity in captive populations of PubMed

Francuski, L. , Djurakic, M. , Ludoski, J. , & Milankov, V. (2013). Landscape genetics and spatial pattern of phenotypic variation of

Francuski, L. , Matić, I. , Ludoški, J. , & Milankov, V. (2011). Temporal patterns of genetic and phenotypic variation in the epidemiologically important drone fly, PubMed

Garibaldi, L. A. , Steffan‐Dewenter, I. , Winfree, R. , Aizen, M. A. , Bommarco, R. , Cunningham, S. A. , Kremen, C. , Carvalheiro, L. G. , Harder, L. D. , Afik, O. , Bartomeus, I. , Benjamin, F. , Boreux, V. , Cariveau, D. , Chacoff, N. P. , Dudenhoffer, J. H. , Freitas, B. M. , Ghazoul, J. , Greenleaf, S. , … Klein, A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339, 1608–1611. PubMed

Gilbert, F. S. (1984). Thermoregulation and the structure of swarms in

Gilbert, F. S. (1985). Diurnal activity patterns in hoverfies (Diptera, Syphidae). Ecological Entomology, 10, 385–392.

Gladis, T. (1994). Establishment and utilization of a mass rearing of

Gladis, T. (1997). Bees versus flies? Rearing methods and effectiveness of pollinators in crop germplasm regeneration (pp. 235–238). International Society for Horticultural Science (ISHS).

Hart, A. J. , Bale, J. S. , & Fenlon, J. S. (1997). Developmental threshold, day‐degree requirements and voltinism of the aphid predator

Heal, J. (1979). Colour patterns of Syrphidae: 1. Genetic variation in the dronefly

Heal, J. R. (1989). Variation and seasonal changes in hoverfly species: Interactions between temperature, age and genotype. Biological Journal of the Linnean Society, 36, 251–269.

Hochachka, P. W. , & Somero, G. N. (2002). Biochemical adaptation: Mechanism and process in physiological evolution. Oxford University Press.

Holloway, G. J. (1993). Phenotypic variation in colour pattern and seasonal plasticity in

Howlett, B. , & Gee, M. (2019). The potential management of the drone fly (

Ireland, S. , & Turner, B. (2006). The effects of larval crowding and food type on the size and development of the blowfly, PubMed

Jarlan, A. , De Oliveira, D. , & Gingras, J. (1997). Pollination by

Jauker, F. , Bondarenko, B. , Becker, H. C. , & Steffan‐Dewenter, I. (2012). Pollination efficiency of wild bees and hoverflies provided to oilseed rape. Agricultural and Forest Entomology, 14, 81–87.

Jauker, F. , Diekotter, T. , Schwarzbach, F. , & Wolters, V. (2009). Pollinator dispersal in an agricultural matrix: Opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landscape Ecology, 24, 547–555.

Kendall, D. A. , & Stradling, D. J. (1972). Some observations on over wintering of the drone fly

Khelifa, R. , Blanckenhorn, W. U. , Roy, J. , Rohner, P. T. , & Mahdjoub, H. (2019). Usefulness and limitations of thermal performance curves in predicting ectotherm development under climatic variability. The Journal of Animal Ecology, 88, 1901–1912. PubMed

Kingsolver, J. G. , Arthur Woods, H. , Buckley, L. B. , Potter, K. A. , MacLean, H. J. , & Higgins, J. K. (2011). Complex life cycles and the responses of insects to climate change. Integrative and Comparative Biology, 51, 719–732. PubMed

Klecka, J. , Hadrava, J. , Biella, P. , & Akter, A. (2018). Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant‐pollinator network. PeerJ, 6, e6025. PubMed PMC

Kuntz, S. G. , & Eisen, M. B. (2014). PubMed PMC

Li, L. T. , Wang, Y. Q. , Ma, J. F. , Liu, L. , Hao, Y. T. , Dong, C. , Gan, Y. J. , Dong, Z. P. , & Wang, Q. Y. (2013). The effects of temperature on the development of the moth PubMed PMC

Menz, M. H. M. , Brown, B. V. , & Wotton, K. R. (2019). Quantification of migrant hoverfly movements (Diptera: Syrphidae) on the west coast of North America. Royal Society Open Science, 6, 190153. PubMed PMC

Morales, G. E. , & Wolff, M. (2010). Insects associated with the composting process of solid urban waste separated at the source. Revista Brasileira de Entomologia, 54, 645–653.

Nicholas, S. , Thyselius, M. , Holden, M. , & Nordström, K. (2018). Rearing and long‐term maintenance of PubMed PMC

Nordström, K. , Dahlbom, J. , Pragadheesh, V. S. , Ghosh, S. , Olsson, A. , Dyakova, O. , Suresh, S. K. , & Olsson, S. B. (2017). In situ modeling of multimodal floral cues attracting wild pollinators across environments. Proceedings of the National Academy of Sciences of the United States of America, 114, 13218–13223. PubMed PMC

Osburn, R. C. (1915). Studies in Syrphidæ‐IV. Species of

Osten‐Sacken, C. R. (1886). Some new facts concerning

Ottenheim, M. , & Volmer, A. (1999). Wing length plasticity in

Ottenheim, M. M. (2000). Annual and diurnal rhythms of

Ottenheim, M. M. , & Holloway, G. J. (1995). The effect of diet and light and larval and pupal development of laboratory‐reared

Ottenheim, M. M. , Volmer, A. D. , & Holloway, G. J. (1996). The genetics of phenotypic plasticity in adult abdominal colour pattern of

Paaijmans, K. P. , Heinig, R. L. , Seliga, R. A. , Blanford, J. I. , Blanford, S. , Murdock, C. C. , & Thomas, M. B. (2013). Temperature variation makes ectotherms more sensitive to climate change. Global Change Biology, 19, 2373–2380. PubMed PMC

Pallarés, S. , Verberk, W. C. E. P. , & Bilton, D. T. (2021). Plasticity of thermal performance curves in a narrow range endemic water beetle. Journal of Thermal Biology, 102, 103113. PubMed

Rader, R. , Cunningham, S. A. , Howlett, B. G. , & Inouye, D. W. (2020). Non‐bee insects as visitors and pollinators of crops: Biology, ecology, and management. Annual Review of Entomology, 65, 391–407. PubMed

RC Team . (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Rebolledo, A. P. , Sgrò, C. M. , & Monro, K. (2021). Thermal performance curves are shaped by prior thermal environment in early life. Frontiers in Physiology, 12, 738338. PubMed PMC

Roffeis, M. , Muys, B. , Almeida, J. , Mathijs, E. , Achten, W. M. J. , Pastor, B. , Velásquez, Y. , Martinez‐Sanchez, A. I. , & Rojo, S. (2015). Pig manure treatment with housefly (

Sánchez‐Bayo, F. , & Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8–27.

Schneider, C. A. , Rasband, W. S. , & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. PubMed PMC

Schou, T. M. , Faurby, S. , Kjaersgaard, A. , Pertoldi, C. , Loeschcke, V. , Hald, B. , & Bahrndorff, S. (2013). Temperature and population density effects on locomotor activity of PubMed

Sekar, S. (2012). A meta‐analysis of the traits affecting dispersal ability in butterflies: Can wingspan be used as a proxy? The Journal of Animal Ecology, 81, 174–184. PubMed

Sengupta, J. , Naskar, A. , Maity, A. , Hazra, S. , Mukhopadhyay, E. , Banerjee, D. , & Ghosh, S. (2016). An updated distributional account of indian hover flies (Insecta: Diptera: Syrphidae). Journal of Entomology and Zoology Studies, 4, 381–396.

Speight, M. C. D. (2017). Species accounts of European Syrphidae, 2017. Syrph the net, the database of European Syrphidae (Diptera) (p. 294). Syrph the Net Publications.

Speight, M. C. D. , Good, J. A. , & Castella, E. (2002). Predicting the changes in farm syrphid faunas that could be caused by changes in farm management regimes (Diptera, Syrphidae). Volucella, 6, 125–137.

Stavert, J. R. , Pattemore, D. E. , Bartomeus, I. , Gaskett, A. C. , & Beggs, J. R. (2018). Exotic flies maintain pollination services as native pollinators decline with agricultural expansion. Journal of Applied Ecology, 55, 1737–1746.

Thyselius, M. , & Nordström, K. (2016). Hoverfly locomotor activity is resilient to external influence and intrinsic factors. Journal of Comparative Physiology, 202, 45–54. PubMed PMC

Van Der Have, T. M. (2002). A proximate model for thermal tolerance in ectotherms. Oikos, 98, 141–155.

Wotton, K. R. , Gao, B. , Menz, M. H. M. , Morris, R. K. A. , Ball, S. G. , Lim, K. S. , Reynolds, D. R. , Hu, G. , & Chapman, J. W. (2019). Mass seasonal migrations of hoverflies provide extensive pollination and crop protection services. Current Biology, 29, 2167–2173. PubMed

Zobrazit více v PubMed

Dryad
10.5061/dryad.2z34tmpr1

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...