This paper presents experimental results from the use of biosurfactants in the remediation of a soil from a smelter in Poland. In the soil, concentrations of Cu (1659.1 mg/kg) and Pb (290.8 mg/kg) exceeded the limit values. Triple batch washing was tested as a soil treatment. Three main variants were used, each starting with a different plant-derived (saponin, S; tannic acid, T) or microbial (rhamnolipids, R) biosurfactant solution in the first washing, followed by 9 different sequences using combinations of the tested biosurfactants (27 in total). The efficiency of the washing was determined based on the concentration of metal removed after each washing (CR), the cumulative removal efficiency (Ecumulative) and metal stability (calculated as the reduced partition index, Ir, based on the metal fractions from BCR sequential extraction). The type of biosurfactant sequence influenced the CR values. The variants that began with S and R had the highest average Ecumulative for Cu and Pb, respectively. The Ecumulative value correlated very strongly (r > 0.8) with the stability of the residual metals in the soil. The average Ecumulative and stability of Cu were the highest, 87.4% and 0.40, respectively, with the S-S-S, S-S-T, S-S-R and S-R-T sequences. Lead removal and stability were the highest, 64-73% and 0.36-0.41, respectively, with the R-R-R, R-R-S, R-S-R and R-S-S sequences. Although the loss of biosurfactants was below 10% after each washing, sequential washing with biosurfactants enriched the soil with external organic carbon by an average of 27-fold (S-first variant), 24-fold (R first) or 19-fold (T first). With regard to environmental limit values, metal stability and organic carbon resources, sequential washing with different biosurfactants is a beneficial strategy for the remediation of smelter-contaminated soil with given properties.
- MeSH
- Soil Pollutants * analysis MeSH
- Soil MeSH
- Environmental Restoration and Remediation * MeSH
- Metals, Heavy * analysis MeSH
- Environmental Pollution MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Poland MeSH
OBJECTIVE: To predict the real-world (RW) cost-effectiveness of carfilzomib in combination with lenalidomide and dexamethasone (KRd) versus lenalidomide and dexamethasone (Rd) in relapsed multiple myeloma (MM) patients after one to three prior therapies. METHODS: A partitioned survival model that included three health states (progression-free, progressed disease and death) was built. Progression-free survival (PFS), overall survival (OS) and time to discontinuation (TTD) data for the Rd arm were derived using the Registry of Monoclonal Gammopathies in the Czech Republic; the relative treatment effects of KRd versus Rd were estimated from the phase 3, randomised, ASPIRE trial, and were used to predict PFS, OS and TTD for KRd. The model was developed from the payer perspective and included drug costs, administration costs, monitoring costs, palliative care costs and adverse-event related costs collected from Czech sources. RESULTS: The base case incremental cost effectiveness ratio for KRd compared with Rd was €73,156 per quality-adjusted life year (QALY) gained. Patients on KRd incurred costs of €117,534 over their lifetime compared with €53,165 for patients on Rd. The QALYs gained were 2.63 and 1.75 for patients on KRd and Rd, respectively. CONCLUSIONS: Combining the strengths of randomised controlled trials and observational databases in cost-effectiveness models can generate policy-relevant results to allow well-informed decision-making. The current model showed that KRd is likely to be cost-effective versus Rd in the RW and, therefore, the reimbursement of KRd represents an efficient allocation of resources within the healthcare system.
- MeSH
- Cost-Benefit Analysis * MeSH
- Dexamethasone pharmacology MeSH
- Quality-Adjusted Life Years MeSH
- Lenalidomide pharmacology MeSH
- Humans MeSH
- Neoplasm Recurrence, Local drug therapy etiology MeSH
- Multiple Myeloma drug therapy etiology mortality MeSH
- Drug Costs MeSH
- Oligopeptides pharmacology MeSH
- Disease-Free Survival MeSH
- Antineoplastic Combined Chemotherapy Protocols MeSH
- Registries MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
- Geographicals
- Czech Republic MeSH
Ecological specialization enables the partitioning of resources and thus can facilitate the coexistence of species and promote higher species richness. Specialization and niche partitioning are expected to exert a decisive influence on local spatial scales, while species richness at regional scales should be shaped mostly by historical factors and abiotic conditions. Moreover, specialization is expected to be particularly important in communities that are exceptionally species rich for their environmental conditions. Concurrently, niche overlap in these communities should be minimized to enable species coexistence. We tested these hypotheses by studying specialization-richness relationship and niche overlap in assemblages of 298 species of songbirds (Passeriformes) across Australia. We used local (2-6 ha) to regional (bioregions) spatial scales and detailed data on habitat, diet and foraging behaviour (method, substrate and stratum). We expected the richness-specialization relationship to be particularly strong (a) on local spatial scales and (b) in communities exceptionally species rich for given environmental conditions (approximated by moisture and vegetation complexity). We also expected (c) low niche overlap in assemblages with specialized species. Only the third prediction was partly supported. First, while the specialization and species richness were often positively related, the strength and the direction of the relationship changed between traits and across spatial scales. The strength of the specialization-richness relationship was consistently positive only in foraging stratum, and it increased towards smaller spatial scales only in case of habitat and diet. Simultaneously, species in local communities demonstrated high overlap in habitat and diet. Second, we did not find particularly strong specialization-richness relationships in exceptionally species-rich communities. Third, we found the expected negative relationship between specialization and overlap in foraging stratum and substrate (in local communities), suggesting that species partition ecological space locally in terms of where they find food. Our expectations were only weakly supported. Specialization on foraging stratum was probably important in facilitating species coexistence. Conversely, although species were often specialized on habitat and diet, high overlap in these traits did not preclude their local coexistence. Overall, specialization and overlap in foraging traits were more important for species coexistence than habitat or diet.
Biological membranes act as barriers or reservoirs for many compounds within the human body. As such, they play an important role in pharmacokinetics and pharmacodynamics of drugs and other molecular species. Until now, most membrane/drug interactions have been inferred from simple partitioning between octanol and water phases. However, the observed variability in membrane composition and among compounds themselves stretches beyond such simplification as there are multiple drug-membrane interactions. Numerous experimental and theoretical approaches are used to determine the molecule-membrane interactions with variable accuracy, but there is no open resource for their critical comparison. For this reason, we have built Molecules on Membranes Database (MolMeDB), which gathers data about over 3600 compound-membrane interactions including partitioning, penetration and positioning. The data have been collected from scientific articles published in peer-reviewed journals and complemented by in-house calculations from high-throughput COSMOmic approach to set up a baseline for further comparison. The data in MolMeDB are fully searchable and browsable by means of name, SMILES, membrane, method or dataset and we offer the collected data openly for further reuse and we are open to further additions. MolMeDB can be a powerful tool that could help researchers better understand the role of membranes and to compare individual approaches used for the study of molecule/membrane interactions.
- MeSH
- Databases, Chemical * MeSH
- Humans MeSH
- Membranes MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Diaspores of myrmecochorous plants consist of a seed (or fruit) and an attached appendage (elaiosome) which attracts ants. The elaiosome is a food resource for ants, whereas the seed is an energy source for subsequent germination and plant establishment. Although myrmecochory occurs in many phylogenetically unrelated lineages, multiple phylogenetic lineages display similar variation in elaiosome and seed metabolite composition due to convergent evolution. We focused on four families (Amaryllidaceae, Boraginaceae, Papaveraceae and Poaceae) each represented by two species from different genera. Diaspores of three populations per species were sampled and concentrations of 60 metabolites from five groups (amino acids, fatty acids, organic acids, polyols and sugars) were determined for both elaiosomes and seeds. Variability in metabolite composition was decomposed by hierarchical ANOVA and variation partitioning using redundancy analysis (reflecting both species nested within families, crossed with seed vs. elaiosome). Differences in the metabolite composition of elaiosomes and seeds were consistent across multiple phylogenetic origins (with more pronounced differences at the level of individual metabolites than at the level of metabolite groups) and supported the idea of convergent evolution under strong selection pressure. Elaiosomes contained higher amounts of easily digestible metabolites (especially amino acids) than seeds. Fatty acids were not more concentrated in elaiosomes, which contradicts the literal translation of "elaiosome" (= oil body). The differentiation of metabolite composition closely reflected taxonomic relatedness, particularly at the family level. Differences among populations within species were small, so the metabolite composition can thus be considered as a trait with relatively low intraspecific variability.
The community composition of any group of organisms should theoretically be determined by a combination of assembly processes including resource partitioning, competition, environmental filtering, and phylogenetic legacy. Environmental DNA studies have revealed a huge diversity of protists in all environments, raising questions about the ecological significance of such diversity and the degree to which they obey to the same rules as macroscopic organisms. The fast-growing cultivable protist species on which hypotheses are usually experimentally tested represent only a minority of the protist diversity. Addressing these questions for the lesser known majority can only be inferred through observational studies. We conducted an environmental DNA survey of the genus Nebela, a group of closely related testate (shelled) amoeba species, in different habitats within Sphagnum-dominated peatlands. Identification based on the mitochondrial cytochrome c oxidase 1 gene, allowed species-level resolution as well as phylogenetic reconstruction. Community composition varied strongly across habitats and associated environmental gradients. Species showed little overlap in their realized niche, suggesting resource partitioning, and a strong influence of environmental filtering driving community composition. Furthermore, phylogenetic clustering was observed in the most nitrogen-poor samples, supporting phylogenetic inheritance of adaptations in the group of N. guttata. This study showed that the studied free-living unicellular eukaryotes follow to community assembly rules similar to those known to determine plant and animal communities; the same may be true for much of the huge functional and taxonomic diversity of protists.
- MeSH
- Ecology MeSH
- Ecosystem * MeSH
- Phylogeny MeSH
- Sphagnopsida * MeSH
- Plants MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Heterocarpy enables species to effectively spread under unfavourable conditions by producing two or more types of fruit differing in ecological characteristics. Although it is frequent in annuals occupying disturbed habitats that are vulnerable to invasion, there is still a lack of congeneric studies addressing the importance of heterocarpy for species invasion success. We compared two pairs of heterocarpic Atriplex species, each of them comprising one invasive and one non-invasive non-native congener. In two common garden experiments, we (i) simulated the influence of different levels of nutrients and population density on plants grown from different types of fruits and examined several traits that are generally positively associated with invasion success, and (ii) grew plants in a replacement series experiment to evaluate resource partitioning between them and to compare their competitive ability. We found that specific functional traits or competitiveness of species cannot explain the invasiveness of Atriplex species, indicating that species invasiveness involves more complex interactions of traits that are important only in certain ecological contexts, i.e. in specific environmental conditions and only some habitats. Interestingly, species trait differences related to invasion success were found between plants growing from the ecologically most contrasting fruit types. We suggest that fruit types differing in ecological behaviour may be essential in the process of invasion or in the general spreading of heterocarpic species, as they either the maximize population growth (type C fruit) or enhance the chance of survival of new populations (type A fruit). Congeners offer the best available methodical framework for comparing traits among phylogenetically closely related invasive and non-invasive species. However, as indicated by our results, this approach is unlikely to reveal invasive traits because of the complexity underlying invasiveness.
BACKGROUND: The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North + East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. RESULTS: A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST = 0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST = 0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. CONCLUSIONS: The variation found at group and subgroup levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.
- MeSH
- Genome-Wide Association Study MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Genetic Markers MeSH
- Genotype MeSH
- Malus classification embryology genetics metabolism MeSH
- Microsatellite Repeats MeSH
- Gene Flow * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
1. Species diversity of arboreal arthropods tends to increase during rainforest succession so that primary forest communities comprise more species than those from secondary vegetation, but it is not well understood why. Primary forests differ from secondary forests in a wide array of factors whose relative impacts on arthropod diversity have not yet been quantified. 2. We assessed the effects of succession-related determinants on a keystone ecological group, arboreal ants, by conducting a complete census of 1332 ant nests from all trees with diameter at breast height ≥ 5 cm occurring within two (unreplicated) 0·32-ha plots, one in primary and one in secondary lowland forest in New Guinea. Specifically, we used a novel rarefaction-based approach to match number, size distribution and taxonomic structure of trees in primary forest communities to those in secondary forest and compared the resulting numbers of ant species. 3. In total, we recorded 80 nesting ant species from 389 trees in primary forest but only 42 species from 295 trees in secondary forest. The two habitats did not differ in the mean number of ant species per tree or in the relationship between ant diversity and tree size. However, the between-tree similarity of ant communities was higher in secondary forest than in primary forest, as was the between-tree nest site similarity, suggesting that secondary trees were more uniform in providing nesting microhabitats. 4. Using our rarefaction method, the difference in ant species richness between two forest types was partitioned according to the effects of higher tree density (22·6%), larger tree size (15·5%) and higher taxonomic diversity of trees (14·3%) in primary than in secondary forest. The remaining difference (47·6%) was because of higher beta diversity of ant communities between primary forest trees. In contrast, difference in nest density was explained solely by difference in tree density. 5. Our study shows that reduction in plant taxonomic diversity in secondary forests is not the main driver of the reduction in canopy ant species richness. We suggest that the majority of arboreal species losses in secondary tropical forests are attributable to simpler vegetation structure, combined with lower turnover of nesting microhabitats between trees.
This paper challenges two paradigms long held in relation to the ecology of parasites in freshwater systems: (1) autogenic species are poorer colonisers than allogenic ones; and (2) parasites with direct life cycles are more successful colonisers than those with complex life cycles. Using new and existing data for Acanthocephala in freshwater fish from the British Isles, it is suggested that all six species present have been able to colonise and persist successfully, in spite of the supposed limitations of their autogenic life-style. It is proposed that these parasites have overcome these limitations by a variety of means, which apply equally to all species considered. Foremost among these is the utilisation of a migratory fish host as either a preferred or a suitable host in their life cycle, allowing colonisation of new areas and rescue effects in established areas, whilst equally important is the use of a common and widespread crustacean as the intermediate host. In addition, all six species appear to exhibit resource partitioning by host at either or both the larval and adult stages, thus reducing the potential for competition and further facilitating colonisation and survival. This hypothesis is supported by data from previous studies both on acanthocephalans from Europe and North America and on other autogenic parasites. It also provides an explanation for the apparently atypical host utilisation patterns of some acanthocephalan species in areas on the edge of their distributions, notably in Ireland.
- MeSH
- Acanthocephala anatomy & histology physiology MeSH
- Species Specificity MeSH
- Ecology MeSH
- Host-Parasite Interactions MeSH
- Fishes parasitology MeSH
- Fresh Water * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- England MeSH