• This record comes from PubMed

Lineage analysis reveals an endodermal contribution to the vertebrate pituitary

. 2020 Oct 23 ; 370 (6515) : 463-467.

Language English Country United States Media print

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
U01 DK105541 NIDDK NIH HHS - United States
K99 DE029858 NIDCR NIH HHS - United States
DP2 DK098092 NIDDK NIH HHS - United States
R35 DE027550 NIDCR NIH HHS - United States
K99 DE027218 NIDCR NIH HHS - United States

Vertebrate sensory organs arise from epithelial thickenings called placodes. Along with neural crest cells, cranial placodes are considered ectodermal novelties that drove evolution of the vertebrate head. The anterior-most placode generates the endocrine lobe [adenohypophysis (ADH)] of the pituitary, a master gland controlling growth, metabolism, and reproduction. In addition to known ectodermal contributions, we use lineage tracing and time-lapse imaging in zebrafish to identify an endodermal contribution to the ADH. Single-cell RNA sequencing of the adult pituitary reveals similar competency of endodermal and ectodermal epithelia to generate all endocrine cell types. Further, endoderm can generate a rudimentary ADH-like structure in the near absence of ectodermal contributions. The fish condition supports the vertebrate pituitary arising through interactions of an ancestral endoderm-derived proto-pituitary with newly evolved placodal ectoderm.

See more in PubMed

Gans C, Northcutt RG, Science 220, 268–273 (1983). PubMed

Schlosser G, Int. J. Dev. Biol 61, 633–648 (2017). PubMed

Rathke MH, Arch. Anat. Physiol. Wiss. Med 5, 482–485 (1838).

Seessel A, Arch. Anat. Physiol 1, 449–467 (1877).

Atwell WJ, Anat. Rec 10, 19–38 (1915).

Bruni AC, Internat. Monstschr. f. Anata. u. Physiol 31, 129–237 (1994).

Nusbaum J, Anat. Anz 12, 161–168 (1896).

St. Remy G, C.R. de la Societe de Biologie 47, 423–425 (1895).

Hockman D et al., eLife 6, e21231 (2017). PubMed

Choe CP et al., Dev. Cell 24, 296–309 (2013). PubMed PMC

Dutta S et al., Development 132, 1579–1590 (2005). PubMed

Lamonerie T et al., Genes Dev. 10, 1284–1295 (1996). PubMed

Dickmeis T et al., Genes Dev. 15, 1487–1492 (2001). PubMed PMC

Cheung LYM et al., Endocrinology 159, 3910–3924 (2018). PubMed PMC

Kozmik Z et al., Dev. Biol 306, 143–159 (2007). PubMed

Soukup V et al., Evodevo 6, 5 (2015). PubMed PMC

Candiani S, Holland ND, Oliveri D, Parodi M, Pestarino M, Brain Res. Bull 75, 324–330 (2008). PubMed

Oisi Y, Ota KG, Kuraku S, Fujimoto S, Kuratani S, Nature 493, 175–180 (2013). PubMed

Gorbman A, Am. Zool 23, 639–654 (1983).

Soukup V, Epperlein HH, Horacek I, Cerny R, Nature 455, 795–798 (2008). PubMed

Minarik M et al., Nature 547, 209 (2017). PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...