Lineage analysis reveals an endodermal contribution to the vertebrate pituitary
Language English Country United States Media print
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
U01 DK105541
NIDDK NIH HHS - United States
K99 DE029858
NIDCR NIH HHS - United States
DP2 DK098092
NIDDK NIH HHS - United States
R35 DE027550
NIDCR NIH HHS - United States
K99 DE027218
NIDCR NIH HHS - United States
PubMed
33093109
PubMed Central
PMC8021009
DOI
10.1126/science.aba4767
PII: 370/6515/463
Knihovny.cz E-resources
- MeSH
- Pituitary Gland, Anterior cytology embryology MeSH
- Single-Cell Analysis MeSH
- Cell Lineage MeSH
- Zebrafish MeSH
- Endoderm cytology embryology MeSH
- RNA-Seq MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Vertebrate sensory organs arise from epithelial thickenings called placodes. Along with neural crest cells, cranial placodes are considered ectodermal novelties that drove evolution of the vertebrate head. The anterior-most placode generates the endocrine lobe [adenohypophysis (ADH)] of the pituitary, a master gland controlling growth, metabolism, and reproduction. In addition to known ectodermal contributions, we use lineage tracing and time-lapse imaging in zebrafish to identify an endodermal contribution to the ADH. Single-cell RNA sequencing of the adult pituitary reveals similar competency of endodermal and ectodermal epithelia to generate all endocrine cell types. Further, endoderm can generate a rudimentary ADH-like structure in the near absence of ectodermal contributions. The fish condition supports the vertebrate pituitary arising through interactions of an ancestral endoderm-derived proto-pituitary with newly evolved placodal ectoderm.
Department of Zoology Charles University Prague Czech Republic
Human Genetics Program Sanford Burnham Prebys Medical Discovery Institute La Jolla CA 92037 USA
See more in PubMed
Gans C, Northcutt RG, Science 220, 268–273 (1983). PubMed
Schlosser G, Int. J. Dev. Biol 61, 633–648 (2017). PubMed
Rathke MH, Arch. Anat. Physiol. Wiss. Med 5, 482–485 (1838).
Seessel A, Arch. Anat. Physiol 1, 449–467 (1877).
Atwell WJ, Anat. Rec 10, 19–38 (1915).
Bruni AC, Internat. Monstschr. f. Anata. u. Physiol 31, 129–237 (1994).
Nusbaum J, Anat. Anz 12, 161–168 (1896).
St. Remy G, C.R. de la Societe de Biologie 47, 423–425 (1895).
Hockman D et al., eLife 6, e21231 (2017). PubMed
Choe CP et al., Dev. Cell 24, 296–309 (2013). PubMed PMC
Dutta S et al., Development 132, 1579–1590 (2005). PubMed
Lamonerie T et al., Genes Dev. 10, 1284–1295 (1996). PubMed
Dickmeis T et al., Genes Dev. 15, 1487–1492 (2001). PubMed PMC
Cheung LYM et al., Endocrinology 159, 3910–3924 (2018). PubMed PMC
Kozmik Z et al., Dev. Biol 306, 143–159 (2007). PubMed
Soukup V et al., Evodevo 6, 5 (2015). PubMed PMC
Candiani S, Holland ND, Oliveri D, Parodi M, Pestarino M, Brain Res. Bull 75, 324–330 (2008). PubMed
Oisi Y, Ota KG, Kuraku S, Fujimoto S, Kuratani S, Nature 493, 175–180 (2013). PubMed
Gorbman A, Am. Zool 23, 639–654 (1983).
Soukup V, Epperlein HH, Horacek I, Cerny R, Nature 455, 795–798 (2008). PubMed
Minarik M et al., Nature 547, 209 (2017). PubMed
Periderm fate and independence of tooth formation are conserved across osteichthyans