Antiproliferative and Cytotoxic Activities of Fluorescein-A Diagnostic Angiography Dye
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH-DRO-VFN64165
Ministry of Health of the Czech Republic
GJ20-30004Y
Czech Science Foundation
GAUK 314621
Charles University
PubMed
35163426
PubMed Central
PMC8836159
DOI
10.3390/ijms23031504
PII: ijms23031504
Knihovny.cz E-zdroje
- Klíčová slova
- carbon monoxide, fluorescein, irradiation, metabolism, proliferation, singlet oxygen, viability,
- MeSH
- angiografie MeSH
- antitumorózní látky chemie farmakologie MeSH
- buňky Hep G2 MeSH
- citrátový cyklus účinky léků účinky záření MeSH
- fluorescein chemie farmakologie MeSH
- fotochemické procesy MeSH
- kontrolní body buněčného cyklu účinky léků účinky záření MeSH
- lidé MeSH
- oxid uhelnatý analýza MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- singletový kyslík analýza MeSH
- světlo MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antitumorózní látky MeSH
- fluorescein MeSH
- oxid uhelnatý MeSH
- singletový kyslík MeSH
Fluorescein is a fluorescent dye used as a diagnostic tool in various fields of medicine. Although fluorescein itself possesses low toxicity, after photoactivation, it releases potentially toxic molecules, such as singlet oxygen (1O2) and, as we demonstrate in this work, also carbon monoxide (CO). As both of these molecules can affect physiological processes, the main aim of this study was to explore the potential biological impacts of fluorescein photochemistry. In our in vitro study in a human hepatoblastoma HepG2 cell line, we explored the possible effects on cell viability, cellular energy metabolism, and the cell cycle. We observed markedly lowered cell viability (≈30%, 75-2400 μM) upon irradiation of intracellular fluorescein and proved that this decrease in viability was dependent on the cellular oxygen concentration. We also detected a significantly decreased concentration of Krebs cycle metabolites (lactate and citrate < 30%; 2-hydroxyglutarate and 2-oxoglutarate < 10%) as well as cell cycle arrest (decrease in the G2 phase of 18%). These observations suggest that this photochemical reaction could have important biological consequences and may account for some adverse reactions observed in fluorescein-treated patients. Additionally, the biological activities of both 1O2 and CO might have considerable therapeutic potential, particularly in the treatment of cancer.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
RECETOX Faculty of Science Masaryk University Kotlářská 2 611 37 Brno Czech Republic
Zobrazit více v PubMed
Brancato R., Bandello F., Lattanzio R. Iris fluorescein angiography in clinical practice. Surv. Ophthalmol. 1997;42:41–70. doi: 10.1016/S0039-6257(97)84042-8. PubMed DOI
Zimmern P.E., Laub D., Leach G.E. Fluorescein angiography of the bladder: Technique and relevance to bladder cancer and interstitial cystitis patients. J. Urol. 1995;154:62–65. doi: 10.1016/S0022-5347(01)67225-2. PubMed DOI
Sonn G.A., Jones S.-N.E., Tarin T.V., Du C.B., Mach K.E., Jensen K.C., Liao J.C. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J. Urol. 2009;182:1299–1305. doi: 10.1016/j.juro.2009.06.039. PubMed DOI
Shkolyar E., Laurie M.A., Mach K.E., Trivedi D.R., Zlatev D.V., Chang T.C., Metzner T.J., Leppert J.T., Kao C.-S., Liao J.C. Optical biopsy of penile cancer with in vivo confocal laser endomicroscopy. Urol. Oncol. Semin. Orig. Investig. 2019;37 doi: 10.1016/j.urolonc.2019.08.018. PubMed DOI
Acerbi F., Broggi M., Eoli M., Anghileri E., Cavallo C., Boffano C., Cordella R., Cuppini L., Pollo B., Schiariti M. Is fluorescein-guided technique able to help in resection of high-grade gliomas? Neurosurg. Focus. 2014;36:E5. doi: 10.3171/2013.11.FOCUS13487. PubMed DOI
Wang L.M., Banu M.A., Canoll P., Bruce J.N. Rationale and Clinical Implications of Fluorescein-Guided Supramarginal Resection in Newly Diagnosed High-Grade Glioma. Front. Oncol. 2021;11:2008. doi: 10.3389/fonc.2021.666734. PubMed DOI PMC
22nd Model List of Essential Medicines. [(accessed on 15 October 2021)]. Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02.
British National Formulary 81. [(accessed on 15 October 2021)]. Available online: https://www.webofpharma.com/2021/08/bnf-81-pdf-free-download-british.html.
Hara T., Inami M., Hara T. Efficacy and safety of fluorescein angiography with orally administered sodium fluorescein. Am. J. Ophthalmol. 1998;126:560–564. doi: 10.1016/S0002-9394(98)00112-3. PubMed DOI
Novotny H.R., Alvis D.L. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–86. doi: 10.1161/01.CIR.24.1.82. PubMed DOI
Marmoy O.R., Henderson R.H., Ooi K. Recommended protocol for performing oral fundus fluorescein angiography (FFA) in children. Eye. 2020;36:234–236. doi: 10.1038/s41433-020-01328-6. PubMed DOI PMC
Hammer D.X., Ferguson R.D., Patel A.H., Vazquez V., Husain D. Angiography with a multifunctional line scanning ophthalmoscope. J. Biomed. Opt. 2012;17:026008. doi: 10.1117/1.JBO.17.2.026008. PubMed DOI PMC
Usui Y. Determination of quantum yield of singlet oxygen formation by photosensitization. Chem. Lett. 1973;2:743–744. doi: 10.1246/cl.1973.743. DOI
Gandin E., Lion Y., Van de Vorst A. Quantum yield of singlet oxygen production by xanthene derivatives. Photochem. Photobiol. 1983;37:271–278. doi: 10.1111/j.1751-1097.1983.tb04472.x. DOI
Antony L.A.P., Slanina T.s., Sebej P., Solomek T., Klán P. Fluorescein analogue xanthene-9-carboxylic acid: A transition-metal-free CO releasing molecule activated by green light. Org. Lett. 2013;15:4552–4555. doi: 10.1021/ol4021089. PubMed DOI
Ryter S.W., Otterbein L.E. Carbon monoxide in biology and medicine. Bioessays. 2004;26:270–280. doi: 10.1002/bies.20005. PubMed DOI
Briviba K., Klotz L.-O., Sies H. Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol. Chem. 1997;378:1259–1265. PubMed
Devasagayam T., Kamat J.P. Biological significance of singlet oxygen. Indian J. Exp. Biol. 2002;40:680–692. PubMed
Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011;61:250–281. doi: 10.3322/caac.20114. PubMed DOI PMC
Otterbein L.E., Bach F.H., Alam J., Soares M., Lu H.T., Wysk M., Davis R.J., Flavell R.A., Choi A.M. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 2000;6:422–428. doi: 10.1038/74680. PubMed DOI
Brouard S., Otterbein L.E., Anrather J., Tobiasch E., Bach F.H., Choi A.M., Soares M.P. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J. Exp. Med. 2000;192:1015–1026. doi: 10.1084/jem.192.7.1015. PubMed DOI PMC
Morita T., Mitsialis S.A., Koike H., Liu Y., Kourembanas S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J. Biol. Chem. 1997;272:32804–32809. doi: 10.1074/jbc.272.52.32804. PubMed DOI
Vítek L., Gbelcová H., Muchová L., Váňová K., Zelenka J., Koníčková R., Šuk J., Zadinova M., Knejzlík Z., Ahmad S. Antiproliferative effects of carbon monoxide on pancreatic cancer. Dig. Liver Dis. 2014;46:369–375. doi: 10.1016/j.dld.2013.12.007. PubMed DOI
Agarwal M.L., Clay M.E., Harvey E.J., Evans H.H., Antunez A.R., Oleinick N.L. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res. 1991;51:5993–5996. PubMed
Star W.M., Marijnissen H.P., van den Berg-Blok A.E., Versteeg J.A., Franken K.A., Reinhold H.S. Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res. 1986;46:2532–2540. PubMed
Krinsky N.I. Singlet oxygen in biological systems. Trends Biochem. Sci. 1977;2:35–38. doi: 10.1016/0968-0004(77)90253-5. DOI
Davies M.J. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 2003;305:761–770. doi: 10.1016/S0006-291X(03)00817-9. PubMed DOI
Blumenthal I. Carbon monoxide poisoning. J. R. Soc. Med. 2001;94:270–272. doi: 10.1177/014107680109400604. PubMed DOI PMC
Bernard C. In: Leçons sur Les Effets des Substances Toxiques et Médicamenteuses. Librairie J.B., editor. Baillière et Fils; Leon, France: 1857. PubMed
Douglas C., Haldane J., Haldane J. The laws of combination of haemoglobin with carbon monoxide and oxygen. J. Physiol. 1912;44:275–304. doi: 10.1113/jphysiol.1912.sp001517. PubMed DOI PMC
Haldane J., Smith J.L. The absorption of oxygen by the lungs. J. Physiol. 1897;22:231. doi: 10.1113/jphysiol.1897.sp000689. PubMed DOI PMC
Nomof N., Hopper J., Brown E., Scott K., Wennesland R. Simultaneous determinations of the total volume of red blood cells by use of carbon monoxide and chromium 51 in healthy and diseased human subjects. J. Clin. Investig. 1954;33:1382–1387. doi: 10.1172/JCI103015. PubMed DOI PMC
Coburn R.F. The carbon monoxide body stores. Ann. N. Y. Acad. Sci. 1970;174:11–22. doi: 10.1111/j.1749-6632.1970.tb49768.x. PubMed DOI
Miró Ò., Casademont J., Barrientos A., Urbano–Márquez Á., Cardellach F. Mitochondrial cytochrome c oxidase inhibition during acute carbon monoxide poisoning. Pharmacol. Toxicol. 1998;82:199–202. doi: 10.1111/j.1600-0773.1998.tb01425.x. PubMed DOI
Zhang J., Piantadosi C.A. Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J. Clin. Investig. 1992;90:1193–1199. doi: 10.1172/JCI115980. PubMed DOI PMC
Thom S.R. Carbon monoxide-mediated brain lipid peroxidation in the rat. J. Appl. Physiol. 1990;68:997–1003. doi: 10.1152/jappl.1990.68.3.997. PubMed DOI
Martínek M., Ludvíková L., Šranková M., Navrátil R., Muchová L., Huzlík J., Roithová J., Vítek L., Klán P., Šebej P. Photochemistry of Common Xanthene Fluorescent Dyes as Efficient Visible-light Activatable CO-Releasing Molecules. ChemRxiv. 2022 doi: 10.26434/chemrxiv-2022-pn3x0. PubMed DOI
Rotman B., Papermaster B.W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc. Natl. Acad. Sci. USA. 1966;55:134. doi: 10.1073/pnas.55.1.134. PubMed DOI PMC
Yankell S.L., Loux J.J. Acute toxicity testing of erythrosine and sodium fluorescein in mice and rats. J. Periodontol. 1977;48:228–231. doi: 10.1902/jop.1977.48.4.228. PubMed DOI
Gollnick K., Schenck G. Mechanism and stereoselectivity of photosensitized oxygen transfer reactions. Pure Appl. Chem. 1964;9:507–526. doi: 10.1351/pac196409040507. DOI
Brown S., Piantadosi C. In vivo binding of carbon monoxide to cytochrome c oxidase in rat brain. J. Appl. Physiol. 1990;68:604–610. doi: 10.1152/jappl.1990.68.2.604. PubMed DOI
Estabrook R.W., Franklin M.R., Hildebrandt A.G. Factors influencing the inhibitory effect of carbon monoxide on cytochrome P-450-catalyzed mixed function oxidation reactions. Ann. N. Y. Acad. Sci. 1970;174:218–232. doi: 10.1111/j.1749-6632.1970.tb49788.x. PubMed DOI
Wilkinson F., Helman W.P., Ross A.B. Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J. Phys. Chem. Ref. Data. 1995;24:663–677. doi: 10.1063/1.555965. DOI
Lazarus L.S., Simons C.R., Arcidiacono A., Benninghoff A.D., Berreau L.M. Extracellular vs intracellular delivery of CO: Does it matter for a stable, diffusible gasotransmitter? J. Med. Chem. 2019;62:9990–9995. doi: 10.1021/acs.jmedchem.9b01254. PubMed DOI PMC
Reinke C., Bevans-Fonti S., Drager L.F., Shin M.-K., Polotsky V.Y. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes. J. Appl. Physiol. 2011;111:881–890. doi: 10.1152/japplphysiol.00492.2011. PubMed DOI PMC
Kaczara P., Sitek B., Przyborowski K., Kurpinska A., Kus K., Stojak M., Chlopicki S. Antiplatelet effect of carbon monoxide is mediated by NAD+ and ATP depletion. Arterioscler. Thromb. Vasc. Biol. 2020;40:2376–2390. doi: 10.1161/ATVBAHA.120.314284. PubMed DOI PMC
Lavitrano M., Smolenski R.T., Musumeci A., Maccherini M., Slominska E., Di Florio E., Bracco A., Mancini A., Stassi G., Patti M. Carbon monoxide improves cardiac energetics and safeguards the heart during reperfusion after cardiopulmonary bypass in pigs. FASEB J. 2004;18:1093–1095. doi: 10.1096/fj.03-0996fje. PubMed DOI
Tsui T.-Y., Siu Y.-T., Schlitt H.J., Fan S.-T. Heme oxygenase-1-derived carbon monoxide stimulates adenosine triphosphate generation in human hepatocyte. Biochem. Biophys. Res. Commun. 2005;336:898–902. doi: 10.1016/j.bbrc.2005.08.187. PubMed DOI
Suliman H.B., Carraway M.S., Tatro L.G., Piantadosi C.A. A new activating role for CO in cardiac mitochondrial biogenesis. J. Cell Sci. 2007;120:299–308. doi: 10.1242/jcs.03318. PubMed DOI
Queiroga C.S., Almeida A.S., Alves P.M., Brenner C., Vieira H.L. Carbon monoxide prevents hepatic mitochondrial membrane permeabilization. BMC Cell Biol. 2011;12:10. doi: 10.1186/1471-2121-12-10. PubMed DOI PMC
Song R., Mahidhara R.S., Liu F., Ning W., Otterbein L.E., Choi A.M. Carbon monoxide inhibits human airway smooth muscle cell proliferation via mitogen-activated protein kinase pathway. Am. J. Respir. Cell Mol. Biol. 2002;27:603–610. doi: 10.1165/rcmb.4851. PubMed DOI
Pae H.-O., Oh G.-S., Choi B.-M., Chae S.-C., Kim Y.-M., Chung K.-R., Chung H.-T. Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J. Immunol. 2004;172:4744–4751. doi: 10.4049/jimmunol.172.8.4744. PubMed DOI
Liang P., Kolodieznyi D., Creeger Y., Ballou B., Bruchez M.P. Subcellular Singlet Oxygen and Cell Death: Location Matters. Front. Chem. 2020;8:1045. doi: 10.3389/fchem.2020.592941. PubMed DOI PMC
Vreman H.J., Stevenson D.K. Heme oxygenase activity as measured by carbon monoxide production. Anal. Biochem. 1988;168:31–38. doi: 10.1016/0003-2697(88)90006-1. PubMed DOI
O’brien R., Gottlieb-Rosenkrantz P. An automatic method for viability assay of cultured cells. J. Histochem. Cytochem. 1970;18:581–589. doi: 10.1177/18.8.581. PubMed DOI
Dvořák A., Zelenka J., Smolková K., Vítek L., Ježek P. Background levels of neomorphic 2-hydroxyglutarate facilitate proliferation of primary fibroblasts. Physiol. Res. 2017;66:293–304. doi: 10.33549/physiolres.933249. PubMed DOI
Carbon Monoxide-Releasing Activity of Plant Flavonoids