Antiproliferative and Cytotoxic Activities of Fluorescein-A Diagnostic Angiography Dye

. 2022 Jan 28 ; 23 (3) : . [epub] 20220128

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35163426

Grantová podpora
MH-DRO-VFN64165 Ministry of Health of the Czech Republic
GJ20-30004Y Czech Science Foundation
GAUK 314621 Charles University

Fluorescein is a fluorescent dye used as a diagnostic tool in various fields of medicine. Although fluorescein itself possesses low toxicity, after photoactivation, it releases potentially toxic molecules, such as singlet oxygen (1O2) and, as we demonstrate in this work, also carbon monoxide (CO). As both of these molecules can affect physiological processes, the main aim of this study was to explore the potential biological impacts of fluorescein photochemistry. In our in vitro study in a human hepatoblastoma HepG2 cell line, we explored the possible effects on cell viability, cellular energy metabolism, and the cell cycle. We observed markedly lowered cell viability (≈30%, 75-2400 μM) upon irradiation of intracellular fluorescein and proved that this decrease in viability was dependent on the cellular oxygen concentration. We also detected a significantly decreased concentration of Krebs cycle metabolites (lactate and citrate < 30%; 2-hydroxyglutarate and 2-oxoglutarate < 10%) as well as cell cycle arrest (decrease in the G2 phase of 18%). These observations suggest that this photochemical reaction could have important biological consequences and may account for some adverse reactions observed in fluorescein-treated patients. Additionally, the biological activities of both 1O2 and CO might have considerable therapeutic potential, particularly in the treatment of cancer.

Zobrazit více v PubMed

Brancato R., Bandello F., Lattanzio R. Iris fluorescein angiography in clinical practice. Surv. Ophthalmol. 1997;42:41–70. doi: 10.1016/S0039-6257(97)84042-8. PubMed DOI

Zimmern P.E., Laub D., Leach G.E. Fluorescein angiography of the bladder: Technique and relevance to bladder cancer and interstitial cystitis patients. J. Urol. 1995;154:62–65. doi: 10.1016/S0022-5347(01)67225-2. PubMed DOI

Sonn G.A., Jones S.-N.E., Tarin T.V., Du C.B., Mach K.E., Jensen K.C., Liao J.C. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J. Urol. 2009;182:1299–1305. doi: 10.1016/j.juro.2009.06.039. PubMed DOI

Shkolyar E., Laurie M.A., Mach K.E., Trivedi D.R., Zlatev D.V., Chang T.C., Metzner T.J., Leppert J.T., Kao C.-S., Liao J.C. Optical biopsy of penile cancer with in vivo confocal laser endomicroscopy. Urol. Oncol. Semin. Orig. Investig. 2019;37 doi: 10.1016/j.urolonc.2019.08.018. PubMed DOI

Acerbi F., Broggi M., Eoli M., Anghileri E., Cavallo C., Boffano C., Cordella R., Cuppini L., Pollo B., Schiariti M. Is fluorescein-guided technique able to help in resection of high-grade gliomas? Neurosurg. Focus. 2014;36:E5. doi: 10.3171/2013.11.FOCUS13487. PubMed DOI

Wang L.M., Banu M.A., Canoll P., Bruce J.N. Rationale and Clinical Implications of Fluorescein-Guided Supramarginal Resection in Newly Diagnosed High-Grade Glioma. Front. Oncol. 2021;11:2008. doi: 10.3389/fonc.2021.666734. PubMed DOI PMC

22nd Model List of Essential Medicines. [(accessed on 15 October 2021)]. Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02.

British National Formulary 81. [(accessed on 15 October 2021)]. Available online: https://www.webofpharma.com/2021/08/bnf-81-pdf-free-download-british.html.

Hara T., Inami M., Hara T. Efficacy and safety of fluorescein angiography with orally administered sodium fluorescein. Am. J. Ophthalmol. 1998;126:560–564. doi: 10.1016/S0002-9394(98)00112-3. PubMed DOI

Novotny H.R., Alvis D.L. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–86. doi: 10.1161/01.CIR.24.1.82. PubMed DOI

Marmoy O.R., Henderson R.H., Ooi K. Recommended protocol for performing oral fundus fluorescein angiography (FFA) in children. Eye. 2020;36:234–236. doi: 10.1038/s41433-020-01328-6. PubMed DOI PMC

Hammer D.X., Ferguson R.D., Patel A.H., Vazquez V., Husain D. Angiography with a multifunctional line scanning ophthalmoscope. J. Biomed. Opt. 2012;17:026008. doi: 10.1117/1.JBO.17.2.026008. PubMed DOI PMC

Usui Y. Determination of quantum yield of singlet oxygen formation by photosensitization. Chem. Lett. 1973;2:743–744. doi: 10.1246/cl.1973.743. DOI

Gandin E., Lion Y., Van de Vorst A. Quantum yield of singlet oxygen production by xanthene derivatives. Photochem. Photobiol. 1983;37:271–278. doi: 10.1111/j.1751-1097.1983.tb04472.x. DOI

Antony L.A.P., Slanina T.s., Sebej P., Solomek T., Klán P. Fluorescein analogue xanthene-9-carboxylic acid: A transition-metal-free CO releasing molecule activated by green light. Org. Lett. 2013;15:4552–4555. doi: 10.1021/ol4021089. PubMed DOI

Ryter S.W., Otterbein L.E. Carbon monoxide in biology and medicine. Bioessays. 2004;26:270–280. doi: 10.1002/bies.20005. PubMed DOI

Briviba K., Klotz L.-O., Sies H. Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol. Chem. 1997;378:1259–1265. PubMed

Devasagayam T., Kamat J.P. Biological significance of singlet oxygen. Indian J. Exp. Biol. 2002;40:680–692. PubMed

Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011;61:250–281. doi: 10.3322/caac.20114. PubMed DOI PMC

Otterbein L.E., Bach F.H., Alam J., Soares M., Lu H.T., Wysk M., Davis R.J., Flavell R.A., Choi A.M. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 2000;6:422–428. doi: 10.1038/74680. PubMed DOI

Brouard S., Otterbein L.E., Anrather J., Tobiasch E., Bach F.H., Choi A.M., Soares M.P. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J. Exp. Med. 2000;192:1015–1026. doi: 10.1084/jem.192.7.1015. PubMed DOI PMC

Morita T., Mitsialis S.A., Koike H., Liu Y., Kourembanas S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J. Biol. Chem. 1997;272:32804–32809. doi: 10.1074/jbc.272.52.32804. PubMed DOI

Vítek L., Gbelcová H., Muchová L., Váňová K., Zelenka J., Koníčková R., Šuk J., Zadinova M., Knejzlík Z., Ahmad S. Antiproliferative effects of carbon monoxide on pancreatic cancer. Dig. Liver Dis. 2014;46:369–375. doi: 10.1016/j.dld.2013.12.007. PubMed DOI

Agarwal M.L., Clay M.E., Harvey E.J., Evans H.H., Antunez A.R., Oleinick N.L. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res. 1991;51:5993–5996. PubMed

Star W.M., Marijnissen H.P., van den Berg-Blok A.E., Versteeg J.A., Franken K.A., Reinhold H.S. Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res. 1986;46:2532–2540. PubMed

Krinsky N.I. Singlet oxygen in biological systems. Trends Biochem. Sci. 1977;2:35–38. doi: 10.1016/0968-0004(77)90253-5. DOI

Davies M.J. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 2003;305:761–770. doi: 10.1016/S0006-291X(03)00817-9. PubMed DOI

Blumenthal I. Carbon monoxide poisoning. J. R. Soc. Med. 2001;94:270–272. doi: 10.1177/014107680109400604. PubMed DOI PMC

Bernard C. In: Leçons sur Les Effets des Substances Toxiques et Médicamenteuses. Librairie J.B., editor. Baillière et Fils; Leon, France: 1857. PubMed

Douglas C., Haldane J., Haldane J. The laws of combination of haemoglobin with carbon monoxide and oxygen. J. Physiol. 1912;44:275–304. doi: 10.1113/jphysiol.1912.sp001517. PubMed DOI PMC

Haldane J., Smith J.L. The absorption of oxygen by the lungs. J. Physiol. 1897;22:231. doi: 10.1113/jphysiol.1897.sp000689. PubMed DOI PMC

Nomof N., Hopper J., Brown E., Scott K., Wennesland R. Simultaneous determinations of the total volume of red blood cells by use of carbon monoxide and chromium 51 in healthy and diseased human subjects. J. Clin. Investig. 1954;33:1382–1387. doi: 10.1172/JCI103015. PubMed DOI PMC

Coburn R.F. The carbon monoxide body stores. Ann. N. Y. Acad. Sci. 1970;174:11–22. doi: 10.1111/j.1749-6632.1970.tb49768.x. PubMed DOI

Miró Ò., Casademont J., Barrientos A., Urbano–Márquez Á., Cardellach F. Mitochondrial cytochrome c oxidase inhibition during acute carbon monoxide poisoning. Pharmacol. Toxicol. 1998;82:199–202. doi: 10.1111/j.1600-0773.1998.tb01425.x. PubMed DOI

Zhang J., Piantadosi C.A. Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J. Clin. Investig. 1992;90:1193–1199. doi: 10.1172/JCI115980. PubMed DOI PMC

Thom S.R. Carbon monoxide-mediated brain lipid peroxidation in the rat. J. Appl. Physiol. 1990;68:997–1003. doi: 10.1152/jappl.1990.68.3.997. PubMed DOI

Martínek M., Ludvíková L., Šranková M., Navrátil R., Muchová L., Huzlík J., Roithová J., Vítek L., Klán P., Šebej P. Photochemistry of Common Xanthene Fluorescent Dyes as Efficient Visible-light Activatable CO-Releasing Molecules. ChemRxiv. 2022 doi: 10.26434/chemrxiv-2022-pn3x0. PubMed DOI

Rotman B., Papermaster B.W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc. Natl. Acad. Sci. USA. 1966;55:134. doi: 10.1073/pnas.55.1.134. PubMed DOI PMC

Yankell S.L., Loux J.J. Acute toxicity testing of erythrosine and sodium fluorescein in mice and rats. J. Periodontol. 1977;48:228–231. doi: 10.1902/jop.1977.48.4.228. PubMed DOI

Gollnick K., Schenck G. Mechanism and stereoselectivity of photosensitized oxygen transfer reactions. Pure Appl. Chem. 1964;9:507–526. doi: 10.1351/pac196409040507. DOI

Brown S., Piantadosi C. In vivo binding of carbon monoxide to cytochrome c oxidase in rat brain. J. Appl. Physiol. 1990;68:604–610. doi: 10.1152/jappl.1990.68.2.604. PubMed DOI

Estabrook R.W., Franklin M.R., Hildebrandt A.G. Factors influencing the inhibitory effect of carbon monoxide on cytochrome P-450-catalyzed mixed function oxidation reactions. Ann. N. Y. Acad. Sci. 1970;174:218–232. doi: 10.1111/j.1749-6632.1970.tb49788.x. PubMed DOI

Wilkinson F., Helman W.P., Ross A.B. Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J. Phys. Chem. Ref. Data. 1995;24:663–677. doi: 10.1063/1.555965. DOI

Lazarus L.S., Simons C.R., Arcidiacono A., Benninghoff A.D., Berreau L.M. Extracellular vs intracellular delivery of CO: Does it matter for a stable, diffusible gasotransmitter? J. Med. Chem. 2019;62:9990–9995. doi: 10.1021/acs.jmedchem.9b01254. PubMed DOI PMC

Reinke C., Bevans-Fonti S., Drager L.F., Shin M.-K., Polotsky V.Y. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes. J. Appl. Physiol. 2011;111:881–890. doi: 10.1152/japplphysiol.00492.2011. PubMed DOI PMC

Kaczara P., Sitek B., Przyborowski K., Kurpinska A., Kus K., Stojak M., Chlopicki S. Antiplatelet effect of carbon monoxide is mediated by NAD+ and ATP depletion. Arterioscler. Thromb. Vasc. Biol. 2020;40:2376–2390. doi: 10.1161/ATVBAHA.120.314284. PubMed DOI PMC

Lavitrano M., Smolenski R.T., Musumeci A., Maccherini M., Slominska E., Di Florio E., Bracco A., Mancini A., Stassi G., Patti M. Carbon monoxide improves cardiac energetics and safeguards the heart during reperfusion after cardiopulmonary bypass in pigs. FASEB J. 2004;18:1093–1095. doi: 10.1096/fj.03-0996fje. PubMed DOI

Tsui T.-Y., Siu Y.-T., Schlitt H.J., Fan S.-T. Heme oxygenase-1-derived carbon monoxide stimulates adenosine triphosphate generation in human hepatocyte. Biochem. Biophys. Res. Commun. 2005;336:898–902. doi: 10.1016/j.bbrc.2005.08.187. PubMed DOI

Suliman H.B., Carraway M.S., Tatro L.G., Piantadosi C.A. A new activating role for CO in cardiac mitochondrial biogenesis. J. Cell Sci. 2007;120:299–308. doi: 10.1242/jcs.03318. PubMed DOI

Queiroga C.S., Almeida A.S., Alves P.M., Brenner C., Vieira H.L. Carbon monoxide prevents hepatic mitochondrial membrane permeabilization. BMC Cell Biol. 2011;12:10. doi: 10.1186/1471-2121-12-10. PubMed DOI PMC

Song R., Mahidhara R.S., Liu F., Ning W., Otterbein L.E., Choi A.M. Carbon monoxide inhibits human airway smooth muscle cell proliferation via mitogen-activated protein kinase pathway. Am. J. Respir. Cell Mol. Biol. 2002;27:603–610. doi: 10.1165/rcmb.4851. PubMed DOI

Pae H.-O., Oh G.-S., Choi B.-M., Chae S.-C., Kim Y.-M., Chung K.-R., Chung H.-T. Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J. Immunol. 2004;172:4744–4751. doi: 10.4049/jimmunol.172.8.4744. PubMed DOI

Liang P., Kolodieznyi D., Creeger Y., Ballou B., Bruchez M.P. Subcellular Singlet Oxygen and Cell Death: Location Matters. Front. Chem. 2020;8:1045. doi: 10.3389/fchem.2020.592941. PubMed DOI PMC

Vreman H.J., Stevenson D.K. Heme oxygenase activity as measured by carbon monoxide production. Anal. Biochem. 1988;168:31–38. doi: 10.1016/0003-2697(88)90006-1. PubMed DOI

O’brien R., Gottlieb-Rosenkrantz P. An automatic method for viability assay of cultured cells. J. Histochem. Cytochem. 1970;18:581–589. doi: 10.1177/18.8.581. PubMed DOI

Dvořák A., Zelenka J., Smolková K., Vítek L., Ježek P. Background levels of neomorphic 2-hydroxyglutarate facilitate proliferation of primary fibroblasts. Physiol. Res. 2017;66:293–304. doi: 10.33549/physiolres.933249. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Carbon Monoxide-Releasing Activity of Plant Flavonoids

. 2025 Jan 15 ; 73 (2) : 1308-1318. [epub] 20241231

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace