The Expansion of House Mouse Major Urinary Protein Genes Likely Did Not Facilitate Commensalism with Humans
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38003032
PubMed Central
PMC10671799
DOI
10.3390/genes14112090
PII: genes14112090
Knihovny.cz E-zdroje
- Klíčová slova
- MUP excretion, Mus musculus, copy number variation, ddPCR, proteomics, synanthropy,
- MeSH
- biologická evoluce MeSH
- divoká zvířata * MeSH
- lidé MeSH
- myši MeSH
- symbióza * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mouse wild-derived strains (WDSs) combine the advantages of classical laboratory stocks and wild animals, and thus appear to be promising tools for diverse biomedical and evolutionary studies. We employed 18 WDSs representing three non-synanthropic species (Mus spretus, Mus spicilegus, and M. macedonicus) and three house mouse subspecies (Mus musculus musculus, M. m. domesticus, M. m. castaneus), which are all important human commensals to explore whether the number of major urinary protein (MUP) genes and their final protein levels in urine are correlated with the level of commensalism. Contrary to expectations, the MUP copy number (CN) and protein excretion in the strains derived from M. m. castaneus, which is supposed to be the strongest commensal, were not significantly different from the non-commensal species. Regardless of an overall tendency for higher MUP amounts in taxa with a higher CN, there was no significant correlation at the strain level. Our study thus suggests that expansion of the Mup cluster, which appeared before the house mouse diversification, is unlikely to facilitate commensalism with humans in three house mouse subspecies. Finally, we found considerable variation among con(sub)specific WDSs, warning against generalisations of results based on a few strains.
Zobrazit více v PubMed
She J.X., Bonhomme F., Boursot P., Thaler L., Catzeflis F. Molecular phylogenies in the genus Mus: Comparative analysis of electrophoretic, scnDNA hybridization, and mtDNA RFLP data. Biol. J. Linn. Soc. 1990;41:83–103. doi: 10.1111/j.1095-8312.1990.tb00823.x. DOI
Geraldes A., Basset P., Gibson B., Smith K.L., Harr B., Yu H.T., Bulatova N., Ziv Y., Nachman M.W. Inferring the history of speciation in house mice from autosomal, X-linked, Y-linked and mitochondrial genes. Mol. Ecol. 2008;17:5349–5363. doi: 10.1111/j.1365-294X.2008.04005.x. PubMed DOI PMC
Duvaux L., Belkhir K., Boulesteix M., Boursot P. Isolation and gene flow: Inferring the speciation history of European house mice. Mol. Ecol. 2011;20:5248–5264. doi: 10.1111/j.1365-294X.2011.05343.x. PubMed DOI
Macholán M., Mrkvicová Vyskočilová M., Bejček V., Šťastný K. Mitochondrial DNA sequence variation and evolution of Old World house mice (Mus musculus) Folia Zool. 2012;61:284–307. doi: 10.25225/fozo.v61.i3.a12.2012. DOI
Phifer-Rixey M., Harr B., Hey J. Further resolution of the house mouse (Mus musculus) phylogeny by integration over isolation-with-migration histories. BMC Evol. Biol. 2020;20:120. doi: 10.1186/s12862-020-01666-9. PubMed DOI PMC
Auffray J., Britton-Davidian J. The house mouse and its relatives: Systematics and taxonomy. In: Macholán M., Baird S.J.E., Munclinger P., Piálek J., editors. Evolution of the House Mouse. Cambridge University Press; Cambridge, UK: 2012. pp. 1–34. DOI
Suzuki H., Aplin K. Phylogeny and biogeography of the genus Mus in Eurasia. In: Macholán M., Baird S.J.E., Munclinger P., Piálek J., editors. Evolution of the House Mouse. Cambridge University Press; Cambridge, UK: 2012. pp. 35–64. DOI
Waterston R.H., Lindblad-Toh K., Birney E., Rogers J., Abril J.F., Agarwal P., Agarwala R., Ainscough R., Alexandersson M., An P., et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520–562. doi: 10.1038/nature01262. PubMed DOI
Bishop C.E., Boursot P., Baron B., Bonhomme F., Hatat D. Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature. 1985;315:70–72. doi: 10.1038/315070a0. PubMed DOI
Bonhomme F., Guénet J.-L., Dod B., Moriwaki K., Bulfield G. The polyphyletic origin of laboratory inbred mice and their rate of evolution. Biol. J. Linn. Soc. 1987;30:51–58. doi: 10.1111/j.1095-8312.1987.tb00288.x. DOI
Nagamine C.M., Nishioka Y., Moriwaki K., Boursot P., Bonhomme F., Lau Y.F. The musculus-type Y chromosome of the laboratory mouse is of Asian origin. Mamm. Genome. 1992;3:84–91. doi: 10.1007/BF00431251. PubMed DOI
Yang H., Wang J.R., Didion J.P., Buus R.J., Bell T.A., Welsh C.E., Bonhomme F., Yu A.H., Nachman M.W., Piálek J., et al. Subspecific origin and haplotype diversity in the laboratory mouse. Nat. Genet. 2011;43:648–655. doi: 10.1038/ng.847. PubMed DOI PMC
Didion J.P., Pardo-Manuel de Villena F. Deconstructing Mus gemischus: Advances in understanding ancestry, structure, and variation in the genome of the laboratory mouse. Mamm. Genome. 2013;24:1–20. doi: 10.1007/s00335-012-9441-z. PubMed DOI PMC
Takada T., Ebata T., Noguchi H., Keane T.M., Adams D.J., Narita T., Shin -I.T., Fujisawa H., Toyoda A., Abe K., et al. The ancestor of extant Japanese fancy mice contributed to the mosaic genomes of classical inbred strains. Genome Res. 2013;23:1329–1338. doi: 10.1101/gr.156497.113. PubMed DOI PMC
Ferris S.D., Sage R.D., Wilson A.C. Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature. 1982;295:163–165. doi: 10.1038/295163a0. PubMed DOI
Goios A., Pereira L., Bogue M., Macaulay V., Amorim A. mtDNA phylogeny and evolution of laboratory mouse strains. Genome Res. 2007;17:293–298. doi: 10.1101/gr.5941007. PubMed DOI PMC
Piálek J., Ďureje Ľ., Hiadlovská Z., Kreisinger J., Aghová T., Bryjová A., Čížková D., Fornůsková A., Goüy de Bellocq J., Hejlová H., et al. Wild-Derived Strains Greatly Expand the Genetic and Phenotype Variation of the House Mouse Model Organism. bioRxiv. 2023 doi: 10.1101/2023.11.05.565684. DOI
Rusu A.S., Krackow S. Kin-preferential cooperation, dominance-dependent reproductive skew, and competition for mates in communally nesting female house mice. Behav. Ecol. Sociobiol. 2004;56:298–305. doi: 10.1007/s00265-004-0787-4. DOI
Cunningham C.B., Ruff J.S., Chase K., Potts W.K., Carrier D.R. Competitive ability in male house mice (Mus musculus): Genetic influences. Behav. Genet. 2013;43:151–160. doi: 10.1007/s10519-012-9577-3. PubMed DOI PMC
Montero I., Teschke M., Tautz D. Paternal imprinting of mating preferences between natural populations of house mice (Mus musculus domesticus) Mol. Ecol. 2013;22:2549–2562. doi: 10.1111/mec.12271. PubMed DOI
Krebs R., Linnenbrink M., Guenther A. Validating standardised personality tests under seminatural conditions in wild house mice (Mus musculus domesticus) Ethology. 2019;125:761–773. doi: 10.1111/eth.12930. DOI
Luzynski K.C., Nicolakis D., Marconi M.A., Zala S.M., Kwak J., Penn D.J. Pheromones that correlate with reproductive success in competitive conditions. Sci. Rep. 2021;11:21970. doi: 10.1038/s41598-021-01507-9. PubMed DOI PMC
Linnenbrink M. Competitive ability is a fast-evolving trait between house mouse populations (Mus musculus domesticus) Front. Zool. 2022;19:31. doi: 10.1186/s12983-022-00476-7. PubMed DOI PMC
König B., Lindholm A.K. The complex social environment of female house mice (Mus domesticus) In: Macholán M., Baird S.J.E., Munclinger P., Piálek J., editors. Evolution of the House Mouse. Cambridge University Press; Cambridge, UK: 2012. pp. 114–134.
Lindholm A.K., Lopes P.C., Dobay A., Steinert S., Buschmann F.J.-U. A system for automatic recording of social behavior in a free-living wild house mouse population. Anim. Biotelemetry. 2015;3:39. doi: 10.1186/s40317-015-0069-0. DOI
Evans J.C., Lindholm A.K., König B. Long-term overlap of social and genetic structure in free-ranging house mice reveals dynamic seasonal and group size effects. Curr. Zool. 2021;67:59–69. doi: 10.1093/cz/zoaa030. PubMed DOI PMC
Guénet J.L., Bonhomme F. Wild mice: An ever-increasing contribution to a popular mammalian model. Trends Genet. 2003;19:24–31. doi: 10.1016/S0168-9525(02)00007-0. PubMed DOI
Piálek J., Vyskočilová M., Bímová B., Havelková D., Piálková J., Dufková P., Bencová V., Ďureje Ľ., Albrecht T., Hauffe H.C., et al. Development of unique house mouse resources suitable for evolutionary studies of speciation. J. Hered. 2008;99:34–44. doi: 10.1093/jhered/esm083. PubMed DOI
Phifer-Rixey M., Nachman M.W. Insights into mammalian biology from the wild house mouse Mus musculus. eLife. 2015;4:e05959. doi: 10.7554/eLife.05959. PubMed DOI PMC
Godfrey P.A., Malnic B., Buck L.B. The mouse olfactory receptor gene family. Proc. Natl. Acad. Sci. USA. 2004;101:2156–2161. doi: 10.1073/pnas.0308051100. PubMed DOI PMC
Rouquier S., Giorgi D. Olfactory receptor gene repertoires in mammals. Mutat. Res. 2007;616:95–102. doi: 10.1016/j.mrfmmm.2006.11.012. PubMed DOI
Tan L., Xie X.S. A near-complete spatial map of olfactory receptors in the mouse main olfactory epithelium. Chem. Senses. 2018;43:427–432. doi: 10.1093/chemse/bjy030. PubMed DOI PMC
Stopka P., Stopková R., Janotová K. Mechanisms of chemical communication. In: Macholán M., Baird S.J.E., Munclinger P., Piálek J., editors. Evolution of the House Mouse. Cambridge University Press; Cambridge, UK: 2012. pp. 191–220. DOI
Mucignat-Caretta C., Caretta A. Message in a bottle: Major urinary proteins and their multiple roles in mouse intraspecific chemical communication. Anim. Behav. 2014;97:255–263. doi: 10.1016/j.anbehav.2014.08.006. DOI
Stopková R., Otčenášková T., Matějková T., Kuntová B., Stopka P. Biological roles of lipocalins in chemical communication, reproduction, and regulation of microbiota. Front. Physiol. 2021;12:740006. doi: 10.3389/fphys.2021.740006. PubMed DOI PMC
Hurst J.L., Beynon R.J. Scent wars: The chemobiology of competitive signalling in mice. BioEssays. 2004;26:1288–1298. doi: 10.1002/bies.20147. PubMed DOI
Novotny M.V. Pheromones, binding proteins and receptor responses in rodents. Biochem. Soc. Trans. 2003;31:117–122. doi: 10.1042/bst0310117. PubMed DOI
Phelan M.M., McLean L., Hurst J.L., Beynon R.J., Lian L.Y. Comparative study of the molecular variation between ‘central’ and ‘peripheral’ MUPs and significance for behavioural signalling. Biochem. Soc. Trans. 2014;42:866–872. doi: 10.1042/BST20140082. PubMed DOI
Beynon R.J., Hurst J.L. Multiple roles of major urinary proteins in the house mouse, Mus domesticus. Biochem. Soc. Trans. 2003;31:142–146. doi: 10.1042/bst0310142. PubMed DOI
Chamero P., Marton T.F., Logan D.W., Flanagan K., Cruz J.R., Saghatelian A., Cravatt B.F., Stowers L. Identification of protein pheromones that promote aggressive behaviour. Nature. 2007;450:899–902. doi: 10.1038/nature05997. PubMed DOI
Roberts S.A., Simpson D.M., Armstrong S.D., Davidson A.J., Robertson D.H., McLean L., Beynon R.J., Hurst J.L. Darcin: A male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol. 2010;8:75. doi: 10.1186/1741-7007-8-75. PubMed DOI PMC
Roberts S.A., Davidson A.J., McLean L., Beynon R.J., Hurst J.L. Pheromonal induction of spatial learning in mice. Science. 2012;338:1462–1465. doi: 10.1126/science.1225638. PubMed DOI
Janotova K., Stopka P. Mechanisms of chemical communication: The role of major urinary proteins. Folia Zool. 2009;58:41–55.
Nelson A.C., Cunningham C.B., Ruff J.S., Potts W.K. Protein pheromone expression levels predict and respond to the formation of social dominance networks. J. Evol. Biol. 2015;28:1213–1224. doi: 10.1111/jeb.12643. PubMed DOI PMC
Flower D.R. The lipocalin protein family: Structure and function. Biochem. J. 1996;318:1–14. doi: 10.1042/bj3180001. PubMed DOI PMC
Åkerstrom B., Flower D.R., Salier J.-P. Lipocalins: Unity in diversity. Biochim. Biophys. Acta. 2000;1482:1–8. doi: 10.1016/S0167-4838(00)00137-0. PubMed DOI
Flower D.R., North A.C., Sansom C.E. The lipocalin protein family: Structural and sequence overview. Biochim. Biophys. Acta. 2000;1482:9–24. doi: 10.1016/S0167-4838(00)00148-5. PubMed DOI
Stopková R., Stopka P., Janotová K., Jedelský P.L. Species-specific expression of major urinary proteins in the house mice (Mus musculus musculus and Mus musculus domesticus) J. Chem. Ecol. 2007;33:861–869. doi: 10.1007/s10886-007-9262-9. PubMed DOI
Cheetham S.A., Smith A.L., Armstrong S.D., Beynon R.J., Hurst J.L. Limited variation in the Major Urinary Proteins of laboratory mice. Physiol. Behav. 2009;96:253–261. doi: 10.1016/j.physbeh.2008.10.005. PubMed DOI
Logan D.W., Marton T.F., Stowers L. Species specificity in major urinary proteins by parallel evolution. PLoS ONE. 2008;9:e3280. doi: 10.1371/journal.pone.0003280. PubMed DOI PMC
Mudge J.M., Armstrong S.D., McLaren K., Beynon R.J., Hurst J.L., Nicholson C., Robertson D.H., Wilming L.G., Harrow J.L. Dynamic instability of the major urinary protein gene family revealed by genomic and phenotypic comparisons between C57 and 129 strain mice. Genome Biol. 2008;9:R91. doi: 10.1186/gb-2008-9-5-r91. PubMed DOI PMC
Sheehan M.J., Campbell P., Miller C.H. Evolutionary patterns of major urinary protein scent signals in house mice and relatives. Mol. Ecol. 2019;28:3587–3601. doi: 10.1111/mec.15155. PubMed DOI
Hurst J.L. The functions of urine marking in a free-living population of house mice, Mus domesticus Rutty. Anim. Behav. 1987;35:1433–1442. doi: 10.1016/S0003-3472(87)80016-7. DOI
de Smith A.J., Walters R.G., Froguel P., Blakemore A.I. Human genes involved in copy number variation: Mechanisms of origin, functional effects and implications for disease. Cytogenet. Genome Res. 2008;123:17–26. doi: 10.1159/000184688. PubMed DOI PMC
Swanson-Wagner R.A., Eichten S.R., Kumari S., Tiffin P., Stein J.C., Ware D., Springer N.M. Pervasive gene content variation and copy number variation in maise and its undomesticated progenitor. Genome Res. 2010;20:1689–1699. doi: 10.1101/gr.109165.110. PubMed DOI PMC
Soh Y.Q., Alföldi J., Pyntikova T., Brown L.G., Graves T., Minx P.J., Fulton R.S., Kremitzki C., Koutseva N., Mueller J.L. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell. 2014;159:800–813. doi: 10.1016/j.cell.2014.09.052. PubMed DOI PMC
Lucotte E.A., Skov L., Jensen J.M., Macià M.C., Munch K., Schierup M.H. Dynamic copy number evolution of X- and Y-linked ampliconic genes in human populations. Genetics. 2018;209:907–920. doi: 10.1534/genetics.118.300826. PubMed DOI PMC
Sun Y., Joyce P.A. Application of droplet digital PCR to determine copy number of endogenous genes and transgenes in sugarcane. Plant Cell Rep. 2017;36:1775–1783. doi: 10.1007/s00299-017-2193-1. PubMed DOI
Payne C.E., Malone N., Humphries R., Bradbrook C., Veggerby C., Beynon R.J., Hurst J.L. Heterogeneity of major urinary proteins in house mice: Population and sex differences. In: Marchlewska-Koj A., Lepri J.J., Müller-Schwarze D., editors. Chemical Signals in Vertebrates. Volume 9. Springer; New York, NY, USA: 2001. pp. 233–240. DOI
Beynon R.J., Veggerby C., Payne C.E., Robertson D.H.L., Gaskell S.J., Humphries R.E., Hurst J.L. Polymorphism in major urinary proteins: Molecular heterogeneity in a wild mouse population. J. Chem. Ecol. 2002;28:1429–1446. doi: 10.1023/A:1016252703836. PubMed DOI
Sage R.D. Wild mice. In: Foster H.L., Small J.D., Fox J.G., editors. The Mouse in Biomedical Research. Academic Press; New York, NY, USA: 1981. pp. 40–90.
Singleton G., Krebs C.J. The secret world of wild mice. History, wild mice, and genetics. In: Fox J.G., Davisson M.T., Quimby F.W., Barthold S.W., Newcomer C.E., Smith A.L., editors. The Mouse in Biomedical Research. Volume 1. Elsevier; Oxford, UK: 2007. pp. 25–52.
Berry R.J. Town mouse, country mouse: Adaptation and adaptability in Mus domesticus (M. m. domesticus) Mamm. Rev. 1981;11:91–136. doi: 10.1111/j.1365-2907.1981.tb00001.x. DOI
Orsini P., Bonhomme F., Britton-Davidian J., Croset H., Gerasimov S., Thaler L. Le complèxe d’espèces du genre Mus en Europe Centrale et Orientale. Z. Säugertierd. 1983;48:86–95.
Marshall J.T. Systematics of the genus Mus. In: Potter M., Nadeau J.H., Cancro M.P., editors. The Wild Mice in Immunology. Volume 127. Springer; Berlin/Heidelberg, Germany: 1986. pp. 12–18. Current Topics in Microbiology and Immunology. PubMed
Mikula O., Macholán M., Ďureje Ľ., Hiadlovská Z., Daniszová K., Janotová K., Vošlajerová Bímová B. House mouse subspecies do differ in their social structure. Ecol. Evol. 2022;28:e9683. doi: 10.1002/ece3.9683. PubMed DOI PMC
Chou C.-W., Lee P.-F., Lu K.-H., Yu H.-T. A population study of house mice (Mus musculus castaneus) inhabiting rice granaries in Taiwan. Zool. Stud. 1998;37:201–212.
Yu H.-T., Peng Y.-H. Population differentiation and gene flow revealed by microsatellite DNA markers in the house mouse (Mus musculus castaneus) in Taiwan. Zool. Sci. 2002;19:475–483. doi: 10.2108/zsj.19.475. PubMed DOI
Wu S.-Y., Lin Y.-T., Yu H.-T. Population ecology of the southeast Asian house mouse (Muridae: Mus musculus castaneus) inhabiting rice granaries in Taiwan. Zool. Stud. 2006;45:467–474.
Marshall J.T., Sage R.D. Taxonomy of the house mouse. Symp. Zool. Soc. Lond. 1981;47:15–25.
Kuntová B., Stopková R., Stopka P. Transcriptomic and proteomic profiling revealed high proportions of odorant binding and antimicrobial defense proteins in olfactory tissues of the house mouse. Front. Genet. 2018;9:26. doi: 10.3389/fgene.2018.00026. PubMed DOI PMC
Stopka P., Kuntova B., Klempt P., Havrdova L., Cerna M., Stopkova R. On the saliva proteome of the eastern European house mouse (Mus musculus musculus) focusing on sexual signalling and immunity. Sci. Rep. 2016;6:32481. doi: 10.1038/srep32481. PubMed DOI PMC
Stopkova R., Klempt P., Kuntova B., Stopka P. On the tear proteome of the house mouse (Mus musculus musculus) in relation to chemical signalling. PeerJ. 2017;5:e3541. doi: 10.7717/peerj.3541. PubMed DOI PMC
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalisation and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Stopková R., Vinkler D., Kuntová B., Šedo O., Albrecht T., Suchan J., Dvořáková-Hortová K., Zdráhal Z., Stopka P. Mouse lipocalins (MUP, OBP, LCN) are co-expressed in tissues involved in chemical communication. Front. Ecol. Evol. 2016;4:47. doi: 10.3389/fevo.2016.00047. DOI
TIBCO Software Inc Data Science Workbench, Version 14. 2020. [(accessed on 20 June 2023)]. Available online: http://tibco.com.
Karn R.C., Chung A.G., Laukaitis C.M. Did androgen-binding protein paralogs undergo neo- and/or subfunctionalization as the Abp gene region expanded in the mouse genome? PLoS ONE. 2014;22:e115454. doi: 10.1371/journal.pone.0115454. PubMed DOI PMC
Pocock M.J.O., Searle J.B., White P.C.L. Adaptations of animals to commensal habitats: Population dynamics of house mice Mus musculus domesticus on farms. J. Anim. Ecol. 2004;73:878–888. doi: 10.1111/j.0021-8790.2004.00863.x. DOI
Pollard K.A., Blumstein D.T. Social group size predicts the evolution of individuality. Curr. Biol. 2011;21:413–417. doi: 10.1016/j.cub.2011.01.051. PubMed DOI
Balas B., Saville A. N170 face specificity and face memory depend on hometown size. Neuropsychologia. 2015;69:211–217. doi: 10.1016/j.neuropsychologia.2015.02.005. PubMed DOI PMC
Wilmer J.B., Germine L., Chabris C.F., Chatterjee G., Williams M., Loken E., Nakayama K., Duchaine B. Human face recognition ability is specific and highly heritable. Proc. Natl. Acad. Sci. USA. 2010;107:5238–5241. doi: 10.1073/pnas.0913053107. PubMed DOI PMC
Shakeshaft N.G., Plomin R. Genetic specificity of face recognition. Proc. Natl. Acad. Sci. USA. 2015;112:12887–12892. doi: 10.1073/pnas.1421881112. PubMed DOI PMC
Knopf J.L., Gallagher J.F., Held W.A. Differential, multihormonal regulation of the mouse major urinary protein gene family in the liver. Mol. Cell. Biol. 1983;3:2232–2240. doi: 10.1128/mcb.3.12.2232-2240.1983. PubMed DOI PMC
Penn D.J., Zala S.M., Luzynski K.C. Regulation of sexually dimorphic expression of Major Urinary Proteins. Front. Physiol. 2022;13:822073. doi: 10.3389/fphys.2022.822073. PubMed DOI PMC
Thoß M., Luzynski K., Ante M., Miller I., Penn D.J. Major urinary protein (MUP) profiles show dynamic changes rather than individual ‘barcode’ signatures. Front. Ecol. Evol. 2015;3:71. doi: 10.3389/fevo.2015.00071. PubMed DOI PMC
Macholán M., Daniszová K., Hamplová P., Janotová K., Kašný M., Mikula O., Vošlajerová Bímová B., Hiadlovská Z. Rank-dependency of Major urinary protein excretion in two house mouse subspecies. J. Vertebr. Biol. 2023;2024:23046. doi: 10.25225/jvb.23046. DOI
Janotova K., Stopka P. The level of major urinary proteins is socially regulated in wild Mus musculus musculus. J. Chem. Ecol. 2011;37:647–656. doi: 10.1007/s10886-011-9966-8. PubMed DOI
Stopka P., Janotova K., Heyrovsky D. The advertisement role of major urinary proteins in mice. Physiol. Behav. 2007;91:667–670. doi: 10.1016/j.physbeh.2007.03.030. PubMed DOI
Hurst J.L., Payne C.E., Nevison C.M., Marie A.D., Humphries R.E., Robertson D.H.L., Cavaggioni A., Beynon R.J. Individual recognition in mice mediated by major urinary proteins. Nature. 2001;414:631–634. doi: 10.1038/414631a. PubMed DOI
Hurst J.L., Beynon R.J. Rodent urinary proteins: Genetic identity signals and pheromones. In: East M.L., Dehnhard M., editors. Chemical Signals in Vertebrates. Volume 12. Springer; New York, NY, USA: 2013. pp. 117–133.
Cheetham S.A., Thom M.D., Jury F., Ollier W.E.R., Beynon R.J., Hurst J.L. The genetic basis of individual-recognition signals in the mouse. Curr. Biol. 2007;17:1771–1777. doi: 10.1016/j.cub.2007.10.007. PubMed DOI
Sheehan M.J., Lee V., Corbet-Detig R., Bi K., Beynon R.J., Hurst J.L., Nachman M.W. Selection on coding and regulatory variation maintains individuality in major urinary protein scent marks in wild mice. PLoS Genet. 2016;12:e1005891. doi: 10.1371/journal.pgen.1005891. PubMed DOI PMC
Thoß M., Enk V., Yu H., Miller I., Luzynski K.C., Balint B., Smith S., Razzazi-Fazeli E., Penn D.J. Diversity of major urinary proteins (MUPs) in wild house mice. Sci. Rep. 2016;6:38378. doi: 10.1038/srep38378. PubMed DOI PMC
Hurst J.L., Beynon R.J., Armstrong S.D., Davidson A.J., Roberts S.A., Gómez-Baena G., Smadja C.M., Ganem G. Molecular heterogeneity in major urinary proteins of Mus musculus subspecies: Potential candidates involved in speciation. Sci. Rep. 2017;7:44992. doi: 10.1038/srep44992. PubMed DOI PMC
Johnston R.E. Chemical communication in rodents: From pheromones to individual recognition. J. Mammal. 2003;84:1141–1162. doi: 10.1644/BLe-010. DOI
Thom M.D., Hurst J.L. Individual recognition by scent. Ann. Zool. Fenn. 2004;41:765–787.
Karn R.C. Evolution of rodent pheromones: A review of the ABPs with comparison to the ESPs and the MUPs. Intern. J. Biochem. Res. Rev. 2013;3:328–363. doi: 10.9734/IJBCRR/2013/5763. PubMed DOI
Humphries R.E., Robertson D.H.L., Beynon R.J., Hurst J.L. Unravelling the chemical basis of competitive scent marking in house mice. Anim. Behav. 1999;58:1177–1190. doi: 10.1006/anbe.1999.1252. PubMed DOI