Cyano- and Ketone-Containing Selenoesters as Multi-Target Compounds against Resistant Cancers

. 2021 Sep 11 ; 13 (18) : . [epub] 20210911

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34572790

Grantová podpora
SZTE ÁOK-KKA 2018/270-62-2 University of Szeged
GINOP-2.3.2-15-2016-00038 University of Szeged
LINKA20285 Consejo Superior de Investigaciones Científicas
22010090 International Visegrad Fund
LTC19007 Czech Ministry of Education, Youth and Sports
17104 COST Action

Fifteen selenocompounds, comprising of eight ketone-containing selenoesters (K1-K8, also known as oxoselenoesters) and seven cyano-containing selenoesters (N1-N7, known also as cyanoselenoesters), have been designed, synthesized, and evaluated as novel anticancer agents. These compounds are derivatives of previously reported active selenoesters and were prepared following a three-step one-pot synthetic route. The following evaluations were performed in their biological assessment: cytotoxicity determination, selectivity towards cancer cells in respect to non-cancer cells, checkerboard combination assay, ABCB1 inhibition and inhibition of ABCB1 ATPase activity, apoptosis induction, and wound healing assay. As key results, all the compounds showed cytotoxicity against cancer cells at low micromolar concentrations, with cyanoselenoesters being strongly selective. All of the oxoselenoesters, except K4, were potent ABCB1 inhibitors, and two of them, namely K5 and K6, enhanced the activity of doxorubicin in a synergistic manner. The majority of these ketone derivatives modulated the ATPase activity, showed wound healing activity, and induced apoptosis, with K3 being the most potent, with a potency close to that of the reference compound. To summarize, these novel derivatives have promising multi-target activity, and are worthy to be studied more in-depth in future works to gain a greater understanding of their potential applications against cancer.

Zobrazit více v PubMed

Bellamy W.T. P-Glycoproteins and multidrug resistance. Annu. Rev. Pharmacol. Toxicol. 1996;36:161–183. doi: 10.1146/annurev.pa.36.040196.001113. PubMed DOI

Smyth M.J., Krasovskis E., Sutton V.R., Johnstone R.W. The drug efflux protein, P-Glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc. Natl. Acad. Sci. USA. 1998;95:7024–7029. doi: 10.1073/pnas.95.12.7024. PubMed DOI PMC

Sharom F.J., Liu R., Romsicki Y., Lu P. Insights into the structure and substrate interactions of the P-Glycoprotein multidrug transporter from spectroscopic studies. Biochim. Biophys. Acta (BBA)—Biomembr. 1999;1461:327–345. doi: 10.1016/S0005-2736(99)00166-2. PubMed DOI

Brinkmann U. Functional Polymorphisms of the Human Multidrug Resistance (MDR1) Gene: Correlation with P Glycoprotein Expression and Activity in vivo. In: Bock G., Goode J.A., editors. Novartis Foundation Symposia. John Wiley & Sons, Ltd.; Chichester, UK: 2008. pp. 207–212. PubMed

Pokharel D., Roseblade A., Oenarto V., Lu J.F., Bebawy M. Proteins regulating the intercellular transfer and function of P-Glycoprotein in multidrug-resistant cancer. Ecancer. 2017;11:768. doi: 10.3332/ecancer.2017.768. PubMed DOI PMC

Hiller D., Sanglard D., Morschhäuser J. Overexpression of the MDR1 Gene is sufficient to Confer increased resistance to toxic compounds in Candida Albicans. Antimicrob. Agents Chemother. 2006;50:1365–1371. doi: 10.1128/AAC.50.4.1365-1371.2006. PubMed DOI PMC

Barrand M.A., Bagrij T., Neo S.-Y. Multidrug resistance-associated protein: A protein distinct from P-Glycoprotein involved in cytotoxic drug expulsion. Gen. Pharmacol. Vasc. Syst. 1997;28:639–645. doi: 10.1016/S0306-3623(96)00284-4. PubMed DOI

Allen J.D., Brinkhuis R.F., van Deemter L., Wijnholds J., Schinkel A.H. Extensive contribution of the multidrug transporters P-Glycoprotein and Mrp1 to basal drug resistance. Cancer Res. 2000;60:5761–5766. PubMed

Allen J.D., Van Dort S.C., Buitelaar M., van Tellingen O., Schinkel A.H. Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-Glycoprotein. Cancer Res. 2003;63:1339–1344. PubMed

Palmeira A., Sousa E., Vasconcelos M.H., Pinto M., Fernandes M.X. Structure and ligand-based design of P-Glycoprotein inhibitors: A historical perspective. Curr. Pharm. Des. 2012;18:4197–4214. doi: 10.2174/138161212802430530. PubMed DOI

Prabhu K.S., Lei X.G. Selenium. Adv. Nutr. 2016;7:415–417. doi: 10.3945/an.115.010785. PubMed DOI PMC

Vinceti M., Filippini T., Cilloni S., Crespi C.M. Advances in Cancer Research. Volume 136. Elsevier; Cambridge, MA, USA: 2017. The Epidemiology of Selenium and Human Cancer; pp. 1–48. PubMed

Álvarez-Pérez M., Ali W., Marć M.A., Handzlik J., Domínguez-Álvarez E. Selenides and diselenides: A review of their anticancer and chemopreventive activity. Molecules. 2018;23:628. doi: 10.3390/molecules23030628. PubMed DOI PMC

Maiyo F., Singh M. Selenium nanoparticles: Potential in cancer gene and drug delivery. Nanomedicine. 2017;12:1075–1089. doi: 10.2217/nnm-2017-0024. PubMed DOI

Domínguez-Álvarez E., Gajdács M., Spengler G., Palop J.A., Marć M.A., Kieć-Kononowicz K., Amaral L., Molnár J., Jacob C., Handzlik J., et al. Identification of selenocompounds with promising properties to reverse cancer multidrug resistance. Bioorganic Med. Chem. Lett. 2016;26:2821–2824. doi: 10.1016/j.bmcl.2016.04.064. PubMed DOI

Gajdács M., Spengler G., Sanmartín C., Marć M.A., Handzlik J., Domínguez-Álvarez E. Selenoesters and selenoanhydrides as novel multidrug resistance reversing agents: A confirmation study in a colon cancer MDR cell line. Bioorganic Med. Chem. Lett. 2017;27:797–802. doi: 10.1016/j.bmcl.2017.01.033. PubMed DOI

Spengler G., Gajdács M., Marć M., Domínguez-Álvarez E., Sanmartín C. Organoselenium compounds as novel adjuvants of chemotherapy drugs—A promising approach to fight cancer drug resistance. Molecules. 2019;24:336. doi: 10.3390/molecules24020336. PubMed DOI PMC

Gajdács M., Nové M., Csonka Á., Varga B., Sanmartín C., Domínguez-Álvarez E., Spengler G. Phenothiazines and selenocompounds: A potential novel combination therapy of multidrug resistant cancer. Anticancer Res. 2020;40:4921–4928. doi: 10.21873/anticanres.14495. PubMed DOI

Liang C.-C., Park A.Y., Guan J.-L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007;2:329–333. doi: 10.1038/nprot.2007.30. PubMed DOI

Chou T.-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–446. doi: 10.1158/0008-5472.CAN-09-1947. PubMed DOI

Stavrovskaya A.A., Moiseeva N.I. Non-canonical functions of the cellular transporter P-Glycoprotein. Biochem. Mosc. Suppl. Ser. A. 2016;10:241–250. doi: 10.1134/S1990747816040085. DOI

Zhu Z., Kimura M., Itokawa Y., Aoki T., Takahashi J.A., Nakatsu S., Oda Y., Kikuchi H. Apoptosis induced by selenium in human glioma cell lines. Biol. Trace Element Res. 1996;54:123–134. doi: 10.1007/BF02786259. PubMed DOI

Ghosh J. Rapid induction of apoptosis in prostate cancer cells by selenium: Reversal by metabolites of arachidonate 5-lipoxygenase. Biochem. Biophys. Res. Commun. 2004;315:624–635. doi: 10.1016/j.bbrc.2004.01.100. PubMed DOI

Zu Y., Yang Z., Tang S., Han Y., Ma J. Effects of P-Glycoprotein and its inhibitors on apoptosis in K562 cells. Molecules. 2014;19:13061–13075. doi: 10.3390/molecules190913061. PubMed DOI PMC

Hariharan S., Dharmaraj S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology. 2020;28:667–695. doi: 10.1007/s10787-020-00690-x. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...