Characterization of an aerated submerged hollow fiber ultrafiltration device for efficient microalgae harvesting
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34690632
PubMed Central
PMC8518668
DOI
10.1002/elsc.202100052
PII: ELSC1436
Knihovny.cz E-zdroje
- Klíčová slova
- energy, filtration, harvesting, membrane, microalgae,
- Publikační typ
- časopisecké články MeSH
The present work characterizes a submerged aerated hollow fiber polyvinylidene fluorid (PVDF) membrane (0.03 μm) device (Harvester) designed for the ultrafiltration (UF) of microalgae suspensions. Commercial baker's yeast served as model suspension to investigate the influence of the aeration rate of the hollow fibers on the critical flux (CF, J c) for different cell concentrations. An optimal aeration rate of 1.25 vvm was determined. Moreover, the CF was evaluated using two different Chlorella cultures (axenic and non-axenic) of various biomass densities (0.8-17.5 g DW/L). Comparably high CFs of 15.57 and 10.08 L/m/2/h were measured for microalgae concentrations of 4.8 and 10.0 g DW/L, respectively, applying very strict CF criteria. Furthermore, the J c-values correlated (negative) linearly with the biomass concentration (0.8-10.0 g DW/L). Concentration factors between 2.8 and 12.4 and volumetric reduction factors varying from 3.5 to 11.5 could be achieved in short-term filtration, whereat a stable filtration handling biomass concentrations up to 40.0 g DW/L was feasible. Measures for fouling control (aeration of membrane fibers, periodic backflushing) have thus been proven to be successful. Estimations on energy consumption revealed very low energy demand of 17.97 kJ/m3 treated microalgae feed suspension (4.99 × 10-3 kWh/m3) and 37.83 kJ/kg treated biomass (1.05 × 10-2 kWh/kg), respectively, for an up-concentration from 2 to 40 g DW/L of a microalgae suspension.
Zobrazit více v PubMed
Richmond, A. , Hu, Q. (Eds.), Handbook of Microalgal Culture: Applied Phycology and Biotechnology, John Wiley & Sons Ltd, Chichester West Sussex UK: 2013.
Singh, G. , Patidar, S. K. , Microalgae harvesting techniques: a review. J. Environ. Manage. 2018, 217, 499–508. PubMed
Barros, A. I. , Gonçalves, A. L. , Simões, M. , Pires, J. C. , Harvesting techniques applied to microalgae: a review. Renew. Sustain. Energy Rev. 2015, 41, 1489–1500.
Molina Grima, E. , Acién Fernández, F. G. , Robles Medina, A. , Downstream processing of cell mass and products, in: Richmond, A. , Hu, Q. (Eds.), Handbook of Microalgal Culture: Applied Phycology and Biotechnology, John Wiley & Sons Ltd, Chichester West Sussex UK: 2013, pp. 267–309.
Muylaert, K. , Bastiaens, L. , Vandamme, D. , Gouveia, L. , Harvesting of microalgae: overview of process options and their strengths and drawbacks, in: Gonzalez‐Fernandez, C. , Muñoz, R. (Eds.), Microalgae‐Based Biofuels and Bioproducts: From Feedstock Cultivation to End‐Products. Woodhead Publishing Series in Energy , Woodhead Publishing an imprint of Elsevier, Duxford, Cambridge, MA, Kidlington: 2017, pp. 113–132.
Mata, T. M. , Martins, A. A. , Caetane, N. S. , Microalgae processing for biodiesel production, in: Melero, J. A. , Luque, R. (Eds.), Advances in Biodiesel Production: Processes and Technologies. Woodhead Publishing Series in Energy, no. 39 , Woodhead Pub Ltd, Oxford: 2012, pp. 204–231.
Al hattab, M. , Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J. Fundam. Renew. Energy Appl. 2015, 05.
Uduman, N. , Qi, Y. , Danquah, M. K. , Forde, G. M. et al., Dewatering of microalgal cultures: a major bottleneck to algae‐based fuels. J. Renew. Sustain. Energy 2010, 2, 12701.
Alam, M. A. , Wang, Z. , Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment, Springer Singapore, Singapore: 2019.
Bux, F. , Chisti, Y. (Eds.), Algae Biotechnology: Products and Processes. Green Energy and Technology , 1st Ed., Springer, Switzerland: 2016.
Najjar, Y. S. , Abu‐Shamleh, A. , Harvesting of microalgae by centrifugation for biodiesel production: a review. Algal Res. 2020, 51, 102046.
Bauer, L. , Ranglová, K. , Masojídek, J. , Drosg, B. et al., Digestate as sustainable nutrient source for microalgae—challenges and prospects. Appl. Sci. 2021, 11, 1056.
Bilad, M. R. , Discart, V. , Vandamme, D. , Foubert, I. et al., Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: filtration performance and energy consumption. Bioresour. Technol. 2013, 138, 329–338. PubMed
Grivalský, T. , Ranglová, K. , da Câmara Manoel, J. A. , Lakatos, G. E. et al., Development of thin‐layer cascades for microalgae cultivation: milestones (review). Folia Microbiol. (Praha) 2019, 64, 603–614. PubMed
Doucha, J. , Lívanský, K. , Novel outdoor thin‐layer high density microalgal culture system: productivity and operational parameters. Algol. Stud. 1995, 76, 129–147.
Masojídek, J. , Kopecký, J. , Giannelli, L. , Torzillo, G. , Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin‐layer cascades. J. Ind. Microbiol. Biotechnol. 2011, 38, 307–317. PubMed
Babaei, A. , Ranglová, K. , Malapascua, J. R. , Masojídek, J. , The synergistic effect of selenium (selenite, ‐SeO 32‐) doseand irradiance intensity in Chlorella cultures. AMB Express 2017, 7, 56. PubMed PMC
Ranglová, K. , Lakatos, G. E. , Câmara Manoel, J. A. , Grivalský, T. et al., Growth, biostimulant and biopesticide activity of the MACC‐1 Chlorella strain cultivated outdoors in inorganic medium and wastewater. Algal Res. 2021, 53, 102136.
Ranglová, K. , Lakatos, G. E. , Câmara Manoel, J. A. , Grivalský, T. et al., Rapid screening test to estimate temperature optima for microalgae growth using photosynthesis activity measurements. Folia Microbiol. (Praha) 2019, 64, 615–625. PubMed
Kanchanatip, E. , Su, B.‐R. , Tulaphol, S. , Den, W. et al., Fouling characterization and control for harvesting microalgae Arthrospira (Spirulina) maxima using a submerged, disc‐type ultrafiltration membrane. Bioresour. Technol. 2016, 209, 23–30. PubMed
Field, R. W. , Wu, D. , Howell, J. A. , Gupta, B. B. , Critical flux concept for microfiltration fouling. J. Membr. Sci. 1995, 100, 259–272.
Le Clech, P. , Jefferson, B. , Chang, I. S. , Judd, S. J. , Critical flux determination by the flux‐step method in a submerged membrane bioreactor. J. Membr. Sci. 2003, 227, 81–93.
Bacchin P., Aimar P., Field R. W., Critical and sustainable fluxes: theory, experiments and applications. J. Membr. Sci. 2006, 281, 42–69.
Diez, V. , Ezquerra, D. , Cabezas, J. L. , García, A. et al., A modified method for evaluation of critical flux, fouling rate and in situ determination of resistance and compressibility in MBR under different fouling conditions. J. Membr. Sci. 2014, 453, 1–11.
van der Marel, P. , Zwijnenburg, A. , Kemperman, A. , Wessling, M. et al., An improved flux‐step method to determine the critical flux and the critical flux for irreversibility in a membrane bioreactor. J. Membr. Sci. 2009, 332, 24–29.
Zhang, X. , Hu, Q. , Sommerfeld, M. , Puruhito, E. et al., Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour. Technol. 2010, 101, 5297–5304. PubMed
Metsämuuronen, S. , Howell, J. , Nyström, M. , Critical flux in ultrafiltration of myoglobin and baker's yeast. J. Membr. Sci. 2002, 196, 13–25.
Wu, Z. , Wang, Z. , Huang, S. , Mai, S. et al., Effects of various factors on critical flux in submerged membrane bioreactors for municipal wastewater treatment. Sep. Purif. Technol. 2008, 62, 56–63.
Cheng, T. , Wei, C.‐H. , Leiknes, T. , Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity. Bioresour. Technol. 2017, 241, 360–368. PubMed
Baerdemaeker, T. D. , Lemmens, B. , Dotremont, C. , Fret, J. et al., Benchmark study on algae harvesting with backwashable submerged flat panel membranes. Bioresour. Technol. 2013, 129, 582–591. PubMed
Wicaksana, F. , Fane, A. G. , Pongpairoj, P. , Field, R. , Microfiltration of algae (Chlorella sorokiniana): critical flux, fouling and transmission. J. Membr. Sci. 2012, 387–388, 83–92.
Mo, W. , Soh, L. , Werber, J. R. , Elimelech, M. et al., Application of membrane dewatering for algal biofuel. Algal Res. 2015, 11, 1–12.
Akhondi, E. , Zamani, F. , Tng, K. , Leslie, G. et al., The performance and fouling control of submerged hollow fiber (HF) systems: a review. Appl. Sci. 2017, 7, 765.
Zhang, Y. , Fu, Q. , Algal fouling of microfiltration and ultrafiltration membranes and control strategies: a review. Sep. Purif. Technol. 2018, 203, 193–208.
Le‐Clech, P. , Chen, V. , Fane, T. A. , Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 2006, 284, 17–53.
Zhang, Y. , Tang, C. Y. , Li, G. , The role of hydrodynamic conditions and pH on algal‐rich water fouling of ultrafiltration. Water Res. 2012, 46, 4783–4789. PubMed
Alipourzadeh, A. , Mehrnia, M. R. , Hallaj Sani, A. , Babaei, A. , Application of response surface methodology for investigation of membrane fouling behaviours in microalgal membrane bioreactor: the effect of aeration rate and biomass concentration. RSC Adv. 2016, 6, 111182–111189.
Luo, Y. , Le‐Clech, P. , Henderson, R. K. , Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: a review. Algal Res. 2017, 24, 425–437.
Liao, Y. , Bokhary, A. , Maleki, E. , Liao, B. , A review of membrane fouling and its control in algal‐related membrane processes. Bioresour. Technol. 2018, 264, 343–358. PubMed
Qu, F. , Liang, H. , Tian, J. , Yu, H. et al., Ultrafiltration (UF) membrane fouling caused by cyanobateria: Fouling effects of cells and extracellular organics matter (EOM). Desalination 2012, 293, 30–37.
Castaing, J. B. , Massé, A. , Séchet, V. , Sabiri, N.‐E. et al., Immersed hollow fibres microfiltration (MF) for removing undesirable micro‐algae and protecting semi‐closed aquaculture basins. Desalination 2011, 276, 386–396.
Safi, C. , Zebib, B. , Merah, O. , Pontalier, P.‐Y. et al., Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew. Sustain. Energy Rev. 2014, 35, 265–278.
Drexler, I. L. C. , Yeh, D. H. , Membrane applications for microalgae cultivation and harvesting: a review. Rev. Environ. Sci. Biotechnol. 2014, 13, 487–504.
Kinnarinen, T. , Tuunila, R. , Häkkinen, A. , Reduction of the width of particle size distribution to improve pressure filtration properties of slurries. Miner. Eng. 2017, 102, 68–74.
Wiącek, J. , Stasiak, M. , Effect of the particle size ratio on the structural properties of granular mixtures with discrete particle size distribution. Granul. Matter 2018, 20, 1–9.
Chu, H. , Zhao, F. , Tan, X. , Yang, L. et al., The impact of temperature on membrane fouling in algae harvesting. Algal Res. 2016, 16, 458–464.
Zhao, F. , Chu, H. , Yu, Z. , Jiang, S. et al., The filtration and fouling performance of membranes with different pore sizes in algae harvesting. Sci. Total Environ. 2017, 587–588, 87–93. PubMed
Boonchai, R. , Seo, G. , Microalgae membrane photobioreactor for further removal of nitrogen and phosphorus from secondary sewage effluent. Korean J. Chem. Eng. 2015, 32, 2047–2052.
Bilad, M. R. , Vandamme, D. , Foubert, I. , Muylaert, K. et al., Harvesting microalgal biomass using submerged microfiltration membranes. Bioresour. Technol. 2012, 111, 343–352. PubMed
Chiou, Y.‐T. , Hsieh, M.‐L. , Yeh, H.‐H. , Effect of algal extracellular polymer substances on UF membrane fouling. Desalination 2010, 250, 648–652.
Zhang, M. , Yao, L. , Maleki, E. , Liao, B.‐Q. et al., Membrane technologies for microalgal cultivation and dewatering: recent progress and challenges. Algal Res. 2019, 44, 101686.
Bilad, M. R. , Arafat, H. A. , Vankelecom, I. F. J. , Membrane technology in microalgae cultivation and harvesting: a review. Biotechnol. Adv. 2014, 32, 1283–1300. PubMed
Gerardo, M. L. , Oatley‐Radcliffe, D. L. , Lovitt, R. W. , Minimizing the energy requirement of dewatering Scenedesmus sp. by microfiltration: performance, costs, and feasibility. Environ. Sci. Technol. 2014, 48, 845–853. PubMed