The synergistic effect of Selenium (selenite, -SeO32-) dose and irradiance intensity in Chlorella cultures
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28265976
PubMed Central
PMC5339263
DOI
10.1186/s13568-017-0348-7
PII: 10.1186/s13568-017-0348-7
Knihovny.cz E-zdroje
- Klíčová slova
- Chlorella, Chlorophyll fluorescence, Growth, Irradiance intensity, Photosynthesis, Selenium incorporation,
- Publikační typ
- časopisecké články MeSH
Microalgae are able to metabolize inorganic selenium (Se) to organic forms (e.g. Se-proteins); nevertheless at certain Se concentration culture growth is inhibited. The aim of this work was to confirm the hypothesis that the limit of Se tolerance in Chlorella cultures is related to photosynthetic performance, i.e. depends on light intensity. We studied the relation between the dose and irradiance to find the range of Se tolerance in laboratory and outdoor cultures. At low irradiance (250 µmol photons m-2 s-1), the daily dose of Se below 8.5 mg per g of biomass (<20 µM) partially stimulated the photosynthetic activity (relative electron transport rate) and growth of Chlorella cultures (biomass density of ~1.5 g DW L-1) compared to the control (no Se added). It was accompanied by substantial Se incorporation to microalgae biomass (~0.5 mg Se g-1 DW). When the Se daily dose and level of irradiance were doubled (16 mg Se g-1 DW; 500 µmol photons m-2 s-1), the photosynthetic activity and growth were stimulated for several days and ample incorporation of Se to biomass (7.1 mg g-1 DW) was observed. Yet, the same Se daily dose under increased irradiance (750 µmol photons m-2 s-1) caused the synergistic effect manifested by significant inhibition of photosynthesis, growth and lowered Se incorporation to biomass. In the present experiments Chl fluorescence techniques were used to monitor photosynthetic activity for determination of optimal Se doses in order to achieve efficient incorporation without substantial inhibition of microalgae growth when producing Se-enriched biomass.
Zobrazit více v PubMed
Araie H, Shiraiwa Y. Selenium in Algae. In: Borowitzka MA, Beardall J, Raven J, editors. The physiology of microalgae developments in applied phycology 6. Switzerland: Springer International Publishing; 2016. pp. 281–288.
Becker EW. Microalgae as a source of protein. Biotechnol Adv. 2007;25:207–210. doi: 10.1016/j.biotechadv.2006.11.002. PubMed DOI
Bennett WN. Assessment of selenium toxicity in algae using turbidostat culture. Water Res. 1988;22:939–942. doi: 10.1016/0043-1354(88)90032-2. DOI
Chen T, Zheng W, Luo Y, Yang F, Bai Y, Tu F. Effects of selenium stress on photosynthetic pigment contents and growth of Chlorella vulgaris. J Plant Physiol Mol Biol. 2005;31:369. PubMed
Chen Z, Song SH, Wen Y, Zou Y, Liu H. Toxicity of Cu (II) to the green Chlorella vulgaris:a perspective of photosynthesis and oxidant stress. Environ Sci Pollut Res. 2016;23:17910–17918. doi: 10.1007/s11356-016-6997-2. PubMed DOI
Conde JE, Sanz Alaejos M. Selenium concentrations in natural and environmental waters. Chem Rev. 1997;97:1979–2003. doi: 10.1021/cr960100g. PubMed DOI
Doucha J, Lívanský K, Kotrbáček V, Zachleder V. Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review. Appl Microbiol Biotechnol. 2009;83:1001–1008. doi: 10.1007/s00253-009-2058-9. PubMed DOI
Eilers PHC, Peeters JCH. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model. 1988;42:199–215. doi: 10.1016/0304-3800(88)90057-9. DOI
Fan TWM, Lane AN, Higashi RM. Selenium biotransformations by a euryhaline microalga isolated from a saline evaporation pond. Environ Sci Technol. 1997;31:569–576. doi: 10.1021/es960471e. DOI
Fournier E, Adam-Guillermin C, Potin-Gautier M, Pannier F. Selenate bioaccumulation and toxicity in Chlamydomonas reinhardtii. Influence of ambient sulphate ion concentration. Aquat Toxicol. 2010;97:51–57. doi: 10.1016/j.aquatox.2009.12.003. PubMed DOI
Geoffroy L, Gilbin R, Simon O, Floriani M, Adam CH, Pradines C, Cournac L, Garnier-Laplace J. Effects of selenate on growth and photosynthesis of Chlamydomonas reinhardtii. Aquat Toxicol. 2007;83:149–158. doi: 10.1016/j.aquatox.2007.04.001. PubMed DOI
Gojkovic Ž, Garbayo I, ArizaJ LG, Marova I, Vilchez C. Selenium bioaccumulation and toxicity in cultures of green microalgae. Algal Res. 2015;7:106–116. doi: 10.1016/j.algal.2014.12.008. DOI
Gojkovic Ž, Vílchez C, Torronteras R, Vigara J, Gomez- Jacinto V, Janzer N, Gomez-Ariza JL, Márová I, Garbayo I. Effect of selenate on viability and selenomethionine accumulation of Chlorella sorokiniana grown in batch culture. Sci World J. 2014;2014:13. doi: 10.1155/2014/401265. PubMed DOI PMC
Goltsev VN, Kalaji HM, Paunov M, Bąba W, Horaczek T, Mojski J, Kociel H, Allakhverdiev SI. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ J Plant Physiol. 2016;63:869–893. doi: 10.1134/S1021443716050058. DOI
Guadayol M, Cortina M, Guadayol JM, Caixach J. Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters. Water Res. 2016;92:149–155. doi: 10.1016/j.watres.2016.01.016. PubMed DOI
Hofstraat JW, Peeters JC, Snel JFH, Geel C. Simple determination of photosynthetic efficiency and photoinhibition of Dunaliella tertiolecta by saturating pulse measurements. Mar Ecol Prog Ser. 1994;103:187–196. doi: 10.3354/meps103187. DOI
Jajoo Kalaji HM, Oukarroum A, Brestic A, Zivcak M, Samborska IA, Cetner MD, Lukasik I, Goltsev V, Ladle RJ. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant. 2016;38(4):102. doi: 10.1007/s11738-016-2113-y. DOI
Kooten O, Snel JF. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res. 1990;25:147–150. doi: 10.1007/BF00033156. PubMed DOI
Kouba A, Velíšek J, Stará A, Masojídek J, Kozák P. Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus) BioMed Res Int. 2014;2014:408270. doi: 10.1155/2014/408270. PubMed DOI PMC
Kromkamp JC, Forster RM. The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol. 2003;38:103–112. doi: 10.1080/0967026031000094094. DOI
Larsen EH, Hansen M, Fan T, Vahl M. Speciation of selenoaminoacids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae. J Anal Atom Spectrom. 2001;16:1403–1408. doi: 10.1039/b106355n. DOI
Li ZY, Guo SY, Li L. Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresour Technol. 2003;89:11–176. PubMed
Lichtenthaler HK. In vivo chlorophyll fluorescenceas a toolfor stress detection in plants. In: Lichtenthaler HK, editor. Application of chlorophyll fluorescence. Dordrecht: Kluwer Academic Publishers; 1988. pp. 129–142.
Malapascua J, Jerez C, Sergejevova M, Figueroa FL, Masojidek J. Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol. 2014;22:123–140. doi: 10.3354/ab00597. DOI
Mane PC, Kadam DD, Chaudhari RD. Biochemical responses of some freshwater algal species to selenium: a laboratory study. Central Eur J Exp Biol. 2013;2(4):27–33.
Mane PC, Bhosle AB. Bioremoval of some metals by living algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res. 2012;6:571–576.
Masojídek J, Vonshak A, Torzillo G. Chlorophyll fluorescence applications in microalgal mass cultures. In: Suggett DJ, Prášil O, Borowitzka MA, editors. Chlorophyll a fluorescence in aquatic sciences: methods and applications; book series: developments in applied phycology. Dordrecht: Springer; 2011. pp. 277–292.
Masojídek J, Kopecký J, Giannelli L, Torzillo G. Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol. 2011;38:307–317. doi: 10.1007/s10295-010-0774-x. PubMed DOI
Morlon H, Fortin C, Floriani M, Adam C, Garnier-Laplace J, Boudou AB. Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: comparison between effects at the population and sub-cellular level. Aquat Toxicol. 2005;73:65–78. doi: 10.1016/j.aquatox.2005.02.007. PubMed DOI
Neumann PM, De Souza MP, Pickering IJ, Terry N. Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant, Cell Environ. 2003;26:897–905. doi: 10.1046/j.1365-3040.2003.01022.x. PubMed DOI
Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN. Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J. 2002;21:3681–3693. doi: 10.1093/emboj/cdf372. PubMed DOI PMC
Oh SE, Hassan SHA, Joo JH. Biosorption of heavy metals by lyophilized cells of Pseudomonas stutzeri. World J Microbiol Biotechnol. 2009;25:1771–1778. doi: 10.1007/s11274-009-0075-6. DOI
Pardo R, Herguedas M, Barrado E, Vega M. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem. 2003;376:26–32. doi: 10.1007/s00216-003-1843-z. PubMed DOI
Pelah D, Ephraim C. Cellular response of Chlorella zofingiensis to exogenous selenium. Plant Growth Regul. 2005;45:225–232. doi: 10.1007/s10725-005-3230-6. DOI
Pronina NA, Kovshova YL, Popova VV, Laptin AB, Alekseeva SG, Baum RF, Mishina IM, Tsoglin LN. The effect of selenite ions on growth and selenium accumulation in Spirulina platensis. Russ J Plant Phys. 2002;49:235–241. doi: 10.1023/A:1014809825140. DOI
Ralph PJ, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot. 2005;82:222–237. doi: 10.1016/j.aquabot.2005.02.006. DOI
Schiavon M, Moro I, Pilon-Smits EAH, Citta A, Folda A, Rigobello MP, Vecchia FD. Comparative effects of selenate and selenite on selenium accumulation, morphophysiology, and glutathione synthesis in Ulva australis. Environ Sci Pollut Res. 2016;23:15023–15032. doi: 10.1007/s11356-016-6649-6. PubMed DOI
Schiavon M, Moro I, Pilon-Smits EAH, Matozzo V, Malagoli M, Vecchia FD. Accumulation of selenium in Ulva sp. and effects on morphology, ultrastructure and antioxidant enzymes and metabolites. Aquat Toxicol. 2012;122:221–231. PubMed
Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res. 1986;10:51–62. doi: 10.1007/BF00024185. PubMed DOI
Serodio J, Vieira S, Cruz S, Coelho H. Rapid light-response curves of chlorophyll fluorescence in microalgae: relationship to steady-state light curves and non-photochemical quenching in benthic diatom-dominated assemblages. Photosynth Res. 2006;90:29–43. doi: 10.1007/s11120-006-9105-5. PubMed DOI
Šetlík I, Berková E, Doucha J, Kubín Š, Vendlová J, Zachleder V. The coupling of synthetic and reproduction processes in Scenedesmus quadricauda. Arch Hydrobiol Algol Stud. 1972;7:172–213.
Strasser RJ, Tsimilli-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govinjee R, editors. Chlorophyll a fluorescence: a signature of photosynthesis. Dordrecht: Springer; 2004. pp. 321–362.
Strasser RJ, Srivastava A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol. 1995;61:33–42.
Sun X, Zhong Y, Huang Z, Yang Y. Selenium accumulation in unicellular green alga Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments. PLoS ONE. 2014;9(11):e112270. doi: 10.1371/journal.pone.0112270. PubMed DOI PMC
Umysová D, Vítová M, Doušková I, Bišová K, Hlavová M, Čížková M, Machát J, Doucha J, Zachleder V. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol. 2009;9:58. doi: 10.1186/1471-2229-9-58. PubMed DOI PMC
Vítová M, Bišová K, Hlavová M, Zachleder V, Rucki M, Čížková M. Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat Toxicol. 2011;102:87–94. doi: 10.1016/j.aquatox.2011.01.003. PubMed DOI
Vriens B, Behra R, Voegelin A, Zupanic A, Winkel LHE. Selenium uptake and methylation by the microalga Chlamydomonas reinhardtii. Environ Sci Technol. 2016;50:711–720. doi: 10.1021/acs.est.5b04169. PubMed DOI
Wellburn AR. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI
Wheeler AE, Zingaro RA, Irgolic K. The effects of selenate, selenite and sulphate on the growth of six unicellular marine algae. J Exp Mar Biol Ecol. 1982;57:181–194. doi: 10.1016/0022-0981(82)90191-5. DOI
White S, Anandraj A, Bux F. PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour Technol. 2011;102:1675–1682. doi: 10.1016/j.biortech.2010.09.097. PubMed DOI
Zachleder V, Šetlík I. Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol Plant. 1982;24:341–353. doi: 10.1007/BF02909100. DOI
Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum