Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30374728
DOI
10.1007/s11120-018-0599-4
PII: 10.1007/s11120-018-0599-4
Knihovny.cz E-zdroje
- Klíčová slova
- Chlorophyll fluorescence transients, Chloroplast thylakoid membranes, Circular dichroism, Electron microscopy, Nicotiana tabacum, Selenate and Se-nanoparticles, Small-angle neutron scattering,
- MeSH
- chlorofyl metabolismus MeSH
- chloroplasty metabolismus MeSH
- cirkulární dichroismus MeSH
- fotosyntéza fyziologie MeSH
- kyselina selenová metabolismus MeSH
- nanočástice chemie MeSH
- tabák metabolismus MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- kyselina selenová MeSH
Selenium (Se) is a natural trace element, which shifts its action in a relatively narrow concentration range from nutritional role to toxicity. Although it has been well established that in plants chloroplasts are among the primary targets, the mechanism of toxicity on photosynthesis is not well understood. Here, we compared selenate and red-allotrope elemental selenium nanoparticles (red nanoSe) in in vitro tobacco cultures to investigate their effects on the structure and functions of the photosynthetic machinery. Selenate at 10 mg/L concentration retarded plant growth; it also led to a decreased chlorophyll content, accompanied with an increase in the carotenoid-to-chlorophyll ratio. Structural examinations of the photosynthetic machinery, using electron microscopy, small-angle neutron scattering and circular dichroism spectroscopy, revealed significant perturbation in the macro-organization of the pigment-protein complexes and sizeable shrinkage in the repeat distance of granum thylakoid membranes. As shown by chlorophyll a fluorescence transient measurements, these changes in the ultrastructure were associated with a significantly diminished photosystem II activity and a reduced performance of the photosynthetic electron transport, and an enhanced capability of non-photochemical quenching. These changes in the structure and function of the photosynthetic apparatus explain, at least in part, the retarded growth of plantlets in the presence of 10 mg/L selenate. In contrast, red nanoSe, even at 100 mg/L and selenate at 1 mg/L, exerted no negative effect on the growth of plantlets and affected only marginally the thylakoid membrane ultrastructure and the photosynthetic functions.
Zobrazit více v PubMed
Anal Bioanal Chem. 2002 Feb;372(3):473-80 PubMed
Chemosphere. 2003 Jul;52(3):585-93 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:401-432 PubMed
J Exp Bot. 2004 Aug;55(404):1927-37 PubMed
Biochim Biophys Acta. 2005 Feb 17;1706(3):250-61 PubMed
Ecotoxicol Environ Saf. 2005 Nov;62(3):309-16 PubMed
Photosynth Res. 2005 Dec;86(3):373-89 PubMed
Plant Cell. 2006 Jul;18(7):1693-703 PubMed
Free Radic Biol Med. 2007 May 15;42(10):1524-33 PubMed
Aquat Toxicol. 2007 Jun 15;83(2):149-58 PubMed
Toxicol Sci. 2008 Jan;101(1):22-31 PubMed
New Phytol. 2008;178(1):92-102 PubMed
Physiol Plant. 2008 Feb;132(2):236-53 PubMed
Photosynth Res. 2009 Aug-Sep;101(2-3):135-46 PubMed
J Hazard Mater. 2009 Dec 30;172(2-3):854-61 PubMed
Plant Physiol Biochem. 2010 Feb-Mar;48(2-3):160-6 PubMed
Biochim Biophys Acta. 2011 Aug;1807(8):977-88 PubMed
Plant Physiol. 2011 May;156(1):382-92 PubMed
Aquat Toxicol. 2011 Mar;102(1-2):87-94 PubMed
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20248-53 PubMed
Biochim Biophys Acta. 2012 Aug;1817(8):1388-91 PubMed
Biochim Biophys Acta. 2012 Aug;1817(8):1220-8 PubMed
Physiol Plant. 2013 Feb;147(2):248-60 PubMed
Plant Physiol. 2012 Aug;159(4):1834-44 PubMed
Photosynth Res. 2014 May;120(1-2):43-58 PubMed
Eur Phys J E Soft Matter. 2013 Jul;36(7):69 PubMed
Biochim Biophys Acta. 2014 Sep;1837(9):1572-80 PubMed
Plant Physiol Biochem. 2014 Aug;81:197-207 PubMed
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):5042-7 PubMed
ScientificWorldJournal. 2014 Jan 29;2014:401265 PubMed
Nanotechnol Sci Appl. 2014 Aug 04;7:63-71 PubMed
Ann Bot. 2016 Feb;117(2):217-35 PubMed
Biochim Biophys Acta. 2016 Sep;1857(9):1479-1489 PubMed
New Phytol. 2017 Mar;213(4):1582-1596 PubMed
Annu Rev Plant Biol. 2017 Apr 28;68:253-289 PubMed
Sci Rep. 2017 Feb 07;7:42039 PubMed
AMB Express. 2017 Dec;7(1):56 PubMed
Photosynth Res. 2018 Jun;136(3):291-301 PubMed
Sci Rep. 2018 Feb 9;8(1):2755 PubMed