Effect of selenate on viability and selenomethionine accumulation of Chlorella sorokiniana grown in batch culture
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24688385
PubMed Central
PMC3928859
DOI
10.1155/2014/401265
Knihovny.cz E-zdroje
- MeSH
- bioreaktory mikrobiologie MeSH
- Chlorella cytologie účinky léků fyziologie MeSH
- kyselina selenová aplikace a dávkování MeSH
- proliferace buněk účinky léků fyziologie MeSH
- selenomethionin izolace a purifikace metabolismus MeSH
- techniky vsádkové kultivace metody MeSH
- velikost buňky účinky léků MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina selenová MeSH
- selenomethionin MeSH
The aim of this work was to study the effect of Se(+VI) on viability, cell morphology, and selenomethionine accumulation of the green alga Chlorella sorokiniana grown in batch cultures. Culture exposed to sublethal Se concentrations of 40 mg · L(-1) (212 μM) decreased growth rates for about 25% compared to control. A selenate EC50 value of 45 mg · L(-1) (238.2 μM) was determined. Results showed that chlorophyll and carotenoids contents were not affected by Se exposure, while oxygen evolution decreased by half. Ultrastructural studies revealed granular stroma, fingerprint-like appearance of thylakoids which did not compromise cell activity. Unlike control cultures, SDS PAGE electrophoresis of crude extracts from selenate-exposed cell cultures revealed appearance of a protein band identified as 53 kDa Rubisco large subunit of Chlorella sorokiniana, suggesting that selenate affects expression of the corresponding chloroplast gene as this subunit is encoded in the chloroplast DNA. Results revealed that the microalga was able to accumulate up to 140 mg · kg(-1) of SeMet in 120 h of cultivation. This paper shows that Chlorella sorokiniana biomass can be enriched in the high value aminoacid SeMet in batch cultures, while keeping photochemical viability and carbon dioxide fixation activity intact, if exposed to suitable sublethal concentrations of Se.
Zobrazit více v PubMed
Geoffroy L, Gilbin R, Simon O, et al. Effect of selenate on growth and photosynthesis of Chlamydomonas reinhardtii . Aquatic Toxicology. 2007;83(2):149–158. PubMed
Brown KM, Arthur JR. Selenium, selenoproteins and human health: a review. Public Health Nutrition. 2001;4(2):593–599. PubMed
Schomburg L, Schweizer U, Köhrle J. Selenium and selenoproteins in mammals: extraordinary, essential, enigmatic. Cellular and Molecular Life Sciences. 2004;61(16):1988–1995. PubMed PMC
Arthur JR, McKenzie RC, Beckett GJ. Selenium in the immune system. Journal of Nutrition. 2003;133(5):1457–1459. PubMed
Rayman MP. The use of high-selenium yeast to raise selenium status: how does it measure up? British Journal of Nutrition. 2004;92(4):557–573. PubMed
Rayman MP. Dietary selenium: time to act. British Medical Journal. 1997;314(7078):387–388. PubMed PMC
Letavayova L, Vlckova V, Brozmanova J. Selenium: from cancer prevention to DNA damage. Toxicology. 2006;227(1-2):1–14. PubMed
Sors TG, Ellis DR, Salt DE. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research. 2005;86(3):373–389. PubMed
Simmons DBD, Emery RJN. Phytochelatin induction by selenate in Chlorella vulgaris, and regulation of effect by sulfate levels. Environmental Toxicology and Chemistry. 2011;30(2):469–476. PubMed
Nève J. New approaches to assess selenium status and requirement. Nutrition Reviews. 2000;58(12):363–369. PubMed
Ebert R, Ulmer M, Zeck S, et al. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells. 2006;24(5):1226–1235. PubMed
Chang W-P, Combs GF, Jr., Scanes CG, Marsh JA. The effects of dietary vitamin E and selenium deficiencies on plasma thyroid and thymic hormone concentrations in the chicken. Developmental and Comparative Immunology. 2005;29(3):265–273. PubMed
Patrick L. Selenium biochemistry and cancer: a review of the literature. Alternative Medicine Review. 2004;9(3):239–258. PubMed
Neumann PM, De Souza MP, Pickering IJ, Terry N. Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant, Cell and Environment. 2003;26(6):897–905. PubMed
Whanger PD. Selenocompounds in plants and animals and their biological significance. Journal of the American College of Nutrition. 2002;21(3):223–232. PubMed
Doucha J, Lívanský K, Kotrbáček V, Zachleder V. Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review. Applied Microbiology and Biotechnology. 2009;83(6):1001–1008. PubMed
Schrauzer GN. The nutritional significance, metabolism and toxicology of selenomethionine. Advances in Food and Nutrition Research. 2003;47:73–112. PubMed
Vadgama JV, Wu Y, Shen D, Hsia S, Block J. Effect of selenium in combination with adriamycin or taxol on several different cancer cells. Anticancer Research. 2000;20(3):1391–1414. PubMed
Rayman MP, Infante HG, Sargent M. Food-chain selenium and human health: spotlight on speciation. British Journal of Nutrition. 2008;100(2):238–253. PubMed
Schrauzer GN. Selenomethionine: a review of its nutritional significance, metabolism and toxicity. Journal of Nutrition. 2000;130(7):1653–1656. PubMed
Surai PF, Dvorska JE. Effect of selenium and vitamin E on lipid peroxidation inthigh muscle tissue of broiler breeder hens during storage. Archiv Fur Geflugelkunde. 2002;66:p. 120.
Orser CS, Salt DE, Pickering IJ, et al. Brassica plants to provide enhanced human mineral nutrition: selenium phytoenrichment and metabolic transformation. Journal of Medicinal Food. 1999;1(1):253–261.
Ellis DR, Sors TG, Brunk DG, et al. Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biology. 2004;4, article 1 PubMed PMC
Morlon H, Fortin C, Adam C, Garnier-Laplace J. Cellular quotas and induced toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii . Radioprotection. 2005;40:101–106. PubMed
Morlon H, Fortin C, Floriani M, Adam C, Garnier-Laplace J, Boudou A. Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: comparison between effects at the population and sub-cellular level. Aquatic Toxicology. 2005;73(1):65–78. PubMed
Fournier E, Adam-Guillermin C, Potin-Gautier M, Pannier F. Selenate bioaccumulation and toxicity in Chlamydomonas reinhardtii: influence of ambient sulphate ion concentration. Aquatic Toxicology. 2010;97(1):51–57. PubMed
Umysová D, Vítová M, Doušková I, et al. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda . BMC Plant Biology. 2009;9:58–74. PubMed PMC
Vítová M, Bišová K, Hlavová M, et al. Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda . Aquatic Toxicology. 2011;102:87–94. PubMed
Li Z-Y, Guo S-Y, Li L. Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresource Technology. 2003;89(2):171–176. PubMed
Pelah D, Cohen E. Cellular response of Chlorella zofingiensis to exogenous selenium. Plant Growth Regulation. 2005;45(3):225–232.
Bennett WN. Assessment of selenium toxicity in algae using turbidostat culture. Water Research. 1988;22(7):939–942.
Gojkovic Z, Garbayo-Nores I, Gomez-Jacinto V, et al. Continuous production of selenomethionine-enriched Chlorella sorokiniana biomass in a photobioreactor. Process Biochemistry. 2013;48:1235–1241.
Svoboda M, Kotrbáček V, Ficek R, Drábek J. Effect of organic selenium from se-enriched alga (Chlorella spp.) on selenium transfer from sows to their progeny. Acta Veterinaria Brno. 2009;78(3):373–377.
Mandalam R, Palsson B. Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnology & Bioengineering. 1998;59(5):605–611. PubMed
Tsoularis A. Analysis of logistic growth model. Research Letters in the Information and Mathematical Sciences. 2001;2:23–46.
Rioboo C, González O, Herrero C, Cid A. Physiological response of freshwater microalga (Chlorella vulgaris) to triazine and phenylurea herbicides. Aquatic Toxicology. 2002;59(3-4):225–235. PubMed
Bagus M. Identification for algae growth kinetics [Ph.D. thesis] Amsterdam, The Netherlands: Agrotechnology and Food Sciences Group, Wageningen University; 2009.
Yang J, Rasa E, Tantayotai P, Scow KM, Yuan H, Hristova KR. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresource Technology. 2011;102(3):3077–3082. PubMed PMC
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.
Ritz C, Streibig JC. Bioassay analysis using R. Journal of Statistical Software. 2005;12:1–22.
Lichtenthaler HK. [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. 1987;148:350–382.
Maxwell K, Johnson GN. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany. 2000;51(345):659–668. PubMed
Harris ELV. Concentration of the extract. In: Roe S, editor. Protein Purification Techniques. Chapter 6. Oxford University Press; 2001. pp. 138–139.
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685. PubMed
Baines D. Analysis of protein purity. In: Roe S, editor. Protein Purification Techniques. Chapter 3. Oxford University Press; 2001. pp. 31–32.
Ramirez-Boo M, Garrido JJ, Ogueta S, Calvete JJ, Gómez-Díaz C, Moreno A. Analysis of porcine peripheral blood mononuclear cells proteome by 2-DE and MS: analytical and biological variability in the protein expression level and protein identification. Proteomics. 2006;6:S215–S225. PubMed
Moreno F, García-Barrera T, Gómez-Ariza JL. Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by HPLC column-switching coupled to ICP-MS. Analyst. 2010;135(10):2700–2705. PubMed
Gómez-Jacinto V, García-Barrera T, Garbayo-Nores I, Vilchez-Lobato C, Gómez-Ariza JL. Metal-metabolomics of microalga Chlorella sorokiniana growing in selenium- and iodine-enriched media. Chemical Papers. 2012;66(9):821–828.
Ibrahim AM, Spacie A. Toxicity of inorganic selenium to the green alga Selenastrum capricornutum printz. Environmental and Experimental Botany. 1990;30(3):265–269.
Masojídek J, Souček P, Máchová J, et al. Detection of photosynthetic herbicides. Algal growth inhibition test vs. electrochemical photosystem II biosensor. Ecotoxicology and Envoronmental Safety. 2011;74:117–122. PubMed
Cuaresma Franco M, Buffing MF, Janssen M, Vílchez Lobato C, Wijffels RH. Performance of Chlorella sorokiniana under simulated extreme winter conditions. Journal of Applied Phycology. 2012;24(4):693–699. PubMed PMC
Masojídek J, Kopecký J, Giannelli L, Torzillo G. Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. Journal of Industrial Microbiology and Biotechnology. 2011;38(2):307–317. PubMed
Masojídek J, Koblížek M, Torzillo G. Photosynthesis in Microalga. In: Richmond A, editor. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. London, UK: Blackwell Science; 2005. pp. 57–82.
Schiavon M, Moro I, Pilon-Smits EA-H, et al. Accumulation of selenium in Ulva sp. and effects on morphology, ultrastructure and antioxidant enzymes and metabolites. Aquatic Toxicology. 2012;(122-123):222–231. PubMed
Tang H, Chen M, Simon Ng KY, Salley SO. Continuous microalgae cultivation in a photobioreactor. Biotechnology and Bioengineering. 2012 PubMed
Sallas L, Luomala E-M, Utriainen J, Kainulainen P, Holopainen JK. Contrasting effects of elevated carbon dioxide concentration and temperature on Rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Tree Physiology. 2003;23(2):97–108. PubMed
Giacomelli L, Rudella A, Van Wijk KJ. High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiology. 2006;141(2):685–701. PubMed PMC
Laizet Y, Pointer D, Mache R, Kuntz M. Subfamily organization and phylogenetic origin of genes encoding plastid lipid-associated proteins of the fibrillin type. Journal of Genome Science and Technology. 2004;3:19–28.
Steinmüller D, Tevini M. Composition and function of plastoglobuli—I. Isolation and purification from chloroplasts and chromoplasts. Planta. 1985;163(2):201–207. PubMed
Rinnan R, Holopainen T. Ozone effects on the ultrastructure of peatland plants: sphagnum mosses, Vaccinium oxycoccus, Andromeda polifolia and Eriophorum vaginatum. Annals of Botany. 2004;94(4):623–634. PubMed PMC
Katz A, Jimenez C, Pick U. Isolation and characterization of a protein associated with carotene globules in the alga Dunaliella bardawil. Plant Physiology. 1995;108(4):1657–1664. PubMed PMC
Bréhélin C, Kessler F, van Wijk KJ. Plastoglobules: versatile lipoprotein particles in plastids. Trends in Plant Science. 2007;12(6):260–266. PubMed
Li F. Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends in Plant Science. 2012;17(9):526–537. PubMed
Nelson DL, Cox MM. Lehninger's Principles of Biochemistry. 5th edition. Freeman; 2008.
Boisson F, Gnassia-Barelli M, Romeo M. Toxicity and accumulation of selenite and selenate in the unicellular marine alga Cricosphaera elongata. Archives of Environmental Contamination and Toxicology. 1995;28(4):487–493.
Novoselov SV, Rao M, Onoshko NV, et al. Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii . EMBO Journal. 2002;21(14):3681–3693. PubMed PMC
Bottino NR, Banks CH, Irgolic KJ, Micks P, Wheeler AE, Zingaro RA. Selenium containing amino acids and proteins in marine algae. Phytochemistry. 1984;23(11):2445–2452.
Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum