Synthesis and In Vitro Antimycobacterial Activity of Novel N-Arylpiperazines Containing an Ethane-1,2-diyl Connecting Chain
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29189762
PubMed Central
PMC6149664
DOI
10.3390/molecules22122100
PII: molecules22122100
Knihovny.cz E-zdroje
- Klíčová slova
- Mycobacterium tuberculosis H37Rv, N-arylpiperazines, arylaminoethanols, electronic properties, lipophilicity,
- MeSH
- antituberkulotika chemická syntéza chemie farmakologie MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- Mycobacterium tuberculosis účinky léků MeSH
- nádorové buněčné linie MeSH
- piperaziny chemická syntéza chemie farmakologie MeSH
- spektrální analýza MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antituberkulotika MeSH
- piperaziny MeSH
Novel 1-(2-{3-/4-[(alkoxycarbonyl)amino]phenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)-piperazin-1-ium chlorides (alkoxy = methoxy to butoxy; 8a-h) have been designed and synthesized through multistep reactions as a part of on-going research programme focused on finding new antimycobacterials. Lipophilic properties of these compounds were estimated by RP-HPLC using methanol/water mobile phases with a various volume fraction of the organic modifier. The log kw values, which were extrapolated from intercepts of a linear relationship between the logarithm of a retention factor k (log k) and volume fraction of a mobile phase modifier (ϕM), varied from 2.113 (compound 8e) to 2.930 (compound 8h) and indicated relatively high lipophilicity of these salts. Electronic properties of the molecules 8a-h were investigated by evaluation of their UV/Vis spectra. In a next phase of the research, the compounds 8a-h were in vitro screened against M. tuberculosis CNCTC My 331/88 (identical with H37Rv and ATCC 2794), M. kansasii CNCTC My 235/80 (identical with ATCC 12478), a M. kansasii 6 509/96 clinical isolate, M. avium CNCTC My 330/80 (identical with ATCC 25291) and M. avium intracellulare ATCC 13950, respectively, as well as against M. kansasii CIT11/06, M. avium subsp. paratuberculosis CIT03 and M. avium hominissuis CIT10/08 clinical isolates using isoniazid, ethambutol, ofloxacin, ciprofloxacin or pyrazinamide as reference drugs. The tested compounds 8a-h were found to be the most promising against M. tuberculosis; a MIC = 8 μM was observed for the most effective 1-(2-{4-[(butoxycarbonyl)amino]phen-ylphenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)piperazin-1-ium chloride (8h). In addition, all of them showed low (insignificant) in vitro toxicity against a human monocytic leukemia THP-1 cell line, as observed LD50 values > 30 μM indicated. The structure-antimycobacterial activity relationships of the analyzed 8a-h series are also discussed.
Zobrazit více v PubMed
Evans B.E., Rittle K.E., Bock M.G., DiPardo R.M., Freidinger R.M., Whitter W.L., Lundell G.F., Veber D.F., Anderson P.S., Chang R.S.L., et al. Methods for drug discovery: Development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem. 1988;31:2235–2246. doi: 10.1021/jm00120a002. PubMed DOI
Shaquiquzzaman M., Verma G., Marella A., Akhter M., Akhtar W., Khan M.F., Tasneem S., Alam M.M. Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur. J. Med. Chem. 2015;102:487–529. doi: 10.1016/j.ejmech.2015.07.026. PubMed DOI
Bobesh K.A., Renuka J., Srilakshmi R.R., Yellanki S., Kulkarni P., Yogeeswari P., Sriram D. Replacement of cardiotoxic aminopiperidine linker with piperazine moiety reduces cardiotoxicity? Mycobacterium tuberculosis novel bacterial topoisomerase inhibitors. Bioorg. Med. Chem. 2016;24:42–52. doi: 10.1016/j.bmc.2015.11.039. PubMed DOI
Xu Z., Zhang S., Feng L.-S., Li X.-N., Huang G.-Ch., Chai Y., Lv Z.-S., Guo H.-Y., Liu M.-L. Synthesis and in vitro antimycobacterial and antibacterial activity of 8-OMe ciprofloxacin-hydrozone/azole hybrids. Molecules. 2017;22:1171. doi: 10.3390/molecules22071171. PubMed DOI PMC
Kayukova L.A., Orazbaeva M.A., Bismilda V.L., Chingisova L.T. Synthesis and antituberculosis activity of O-aroyl-β-(4-phenylpiperazin-1-yl)propioamidooximes. Pharm. Chem. J. 2010;44:17–20. doi: 10.1007/s11094-010-0467-9. DOI
Keng Yoon Y., Ashraf Ali M., Choon T.S., Ismail R., Chee Wei A., Suresh Kumar R., Osman H., Beevi F. Antituberculosis: Synthesis and antimycobacterial activity of novel benzimidazole derivatives. Biomed. Res. Int. 2013 doi: 10.1155/2013/926309. PubMed DOI PMC
Sriram D., Yogeeswari P., Senthilkumar P., Sangaraju D., Nelli R., Banerjee D., Bhat P., Manjashetty T.H. Synthesis and antimycobacterial evaluation of novel phthalazin-4-ylacetamides against log- and starved phase cultures. Chem. Biol. Drug. Des. 2010;75:381–391. doi: 10.1111/j.1747-0285.2010.00947.x. PubMed DOI
Malinka W., Świątek P., Śliwińska M., Szponar B., Gamian A., Karczmarzyk Z., Fruziński A. Synthesis of novel isothiazolopyridines and their in vitro evaluation against Mycobacterium and Propionibacterium acnes. Bioorg. Med. Chem. 2013;21:5282–5291. doi: 10.1016/j.bmc.2013.06.027. PubMed DOI
Bogatcheva E., Hanrahan C., Nikonenko B., Samala R., Chen P., Gearhart J., Barbosa F., Einck L., Nacy C.A., Protopopova M. Identification of new diamine scaffolds with activity against Mycobacterium tuberculosis. J. Med. Chem. 2006;49:3045–3048. doi: 10.1021/jm050948+. PubMed DOI PMC
Shepherd R.G., Baughn C., Cantrall M.L., Goodstein B., Thomas J.P., Wilkinson R.G. Structure–activity studies leading to ethambutol, a new type of antituberculous compound. Ann. N. Y. Acad. Sci. 1966;135:686–710. doi: 10.1111/j.1749-6632.1966.tb45516.x. PubMed DOI
Lee R.E., Protopopova M., Crooks E., Slayden R.A., Terrot M., Barry C.E., III Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J. Comb. Chem. 2003;5:172–187. doi: 10.1021/cc020071p. PubMed DOI
Stavrakov G., Valcheva V., Philipova I., Doytchinova I. Novel camphane-based anti-tuberculosis agents with nanomolar activity. Eur. J. Med. Chem. 2013;70:372–379. doi: 10.1016/j.ejmech.2013.10.015. PubMed DOI
Petkova Z., Valcheva V., Momekov G., Petrov P., Dimitrov V., Doytchinova I., Stavrakov G., Stoyanova M. Antimycobacterial activity of chiral aminoalcohols with camphane scaffold. Eur. J. Med. Chem. 2014;81:150–157. doi: 10.1016/j.ejmech.2014.05.007. PubMed DOI
Ghosh A.K., Brindisi M. Organic carbamates in drug design and medicinal chemistry. J. Med. Chem. 2015;58:2895–2940. doi: 10.1021/jm501371s. PubMed DOI PMC
Moraczewski A.L., Banaszynski L.A., From A.M., White C.E., Smith B.D. Using hydrogen bonding to control carbamate C−N rotamer equilibria. J. Org. Chem. 1998;63:7258–7262. doi: 10.1021/jo980644d. PubMed DOI
Kečkéšová S., Sedlárová E., Čižmárik J., Garaj V., Csöllei J., Mokrý P., Andriamainty F., Malík I., Kaustová J. Antimycobacterial activity of novel derivatives of arylcarbonyloxyaminopropanols. Čes. Slov. Farm. 2009;58:203–207.
Tengler J., Kapustíková I., Peško M., Govender R., Keltošová S., Mokrý P., Kollár P., O’Mahony J., Coffey A., Kráľová K., et al. Synthesis and biological evaluation of 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl-4-[(alkoxycarbonyl)amino]benzoates. Sci. World J. 2013;2013 doi: 10.1155/2013/274570. PubMed DOI PMC
Maruniak M., Sedlárová E., Csöllei J., Kapustíková I., Mokrý P., Malík I., Havranová Sichrovská Ľ., Stanzel L. Study of physicochemical properties and antimycobacterial activity of phenylcarbamic acid derivatives. In: Sedlárová E., Malík I., Garaj V., Maruniak M., editors. Advances in Pharmaceutical Chemistry. 1st ed. KO and KA Company; Bratislava, Slovak Republic: 2016. pp. 68–76.
Waisser K., Dražková K., Čižmárik J., Kaustová J. Antimycobacterial activity of basic ethylesters of alkoxy-substituted phenylcarbamic acids. Folia Microbiol. 2003;48:45–50. doi: 10.1007/BF02931274. PubMed DOI
Waisser K., Dražková K., Čižmárik J., Kaustová J. Antimycobacterial activity of piperidinylpropyl esters of alkoxy-substituted phenylcarbamic acids. Folia Microbiol. 2003;48:585–587. doi: 10.1007/BF02993463. PubMed DOI
Waisser K., Dražková K., Čižmárik J., Kaustová J. A new group of potential antituberculotics: Hydrochlorides of piperidinylalkyl esters of alkoxy-substituted phenylcarbamic acids. Folia Microbiol. 2004;49:265–268. doi: 10.1007/BF02931041. PubMed DOI
Hansch C., Clayton J.M. Lipophilic character and biological activity of drugs II. The parabolic case. J. Pharm. Sci. 1973;62:1–21. doi: 10.1002/jps.2600620102. PubMed DOI
Balgavý P., Devínsky F. Cut-off effects in biological activities of surfactants. Adv. Colloid Interface Sci. 1996;12:23–63. doi: 10.1016/0001-8686(96)00295-3. PubMed DOI
Waisser K., Dražková K., Čižmárik J., Kaustová J. Influence of lipophilicity on the antimycobacterial activity of the hydrochlorides of piperidinylethyl esters of ortho-substituted phenylcarbamic acids. Sci. Pharm. 2004;72:43–49. doi: 10.3797/scipharm.aut-04-05. DOI
Upadhayaya R.S., Kulkarni G.M., Vasireddy N.R., Vandavasi J.K., Dixit S.S., Sharma V., Chattopadhyaya J. Design, synthesis and biological evaluation of novel triazole, urea and thiourea derivatives of quinoline against Mycobacterium tuberculosis. Bioorg. Med. Chem. 2009;13:4681–4692. doi: 10.1016/j.bmc.2009.04.069. PubMed DOI
Upadhayaya R.S., Vandavasi J.K., Kardile R.A., Lahore S.V., Dixit S.S., Deokar H.S., Shinde P.D., Sarmah M.P., Chattopadhyaya J. Novel quinoline and naphthalene derivatives as potent antimycobacterial agents. Eur. J. Med. Chem. 2010;45:1854–1867. doi: 10.1016/j.ejmech.2010.01.024. PubMed DOI
Parai M.K., Panda G., Chaturvedi V., Manju Y.K., Sinha S. Thiophene containing triarylmethanes as antitubercular agents. Bioorg. Med. Chem. Lett. 2008;18:289–292. doi: 10.1016/j.bmcl.2007.10.083. PubMed DOI
Kettmann V., Csöllei J., Račanská E., Švec P. Synthesis and structure–activity relationships of new β-adrenoreceptor antagonists. Evidence for the electrostatic requirements for β-adrenoreceptor antagonists. Eur. J. Med. Chem. 1991;26:843–851. doi: 10.1016/0223-5234(91)90127-9. DOI
Kiss A., Potor A., Hell Z. Heterogeneous catalytic solvent-free synthesis of quinoline derivatives via the Friedländer Reaction. Catal. Lett. 2008;125:250–253. doi: 10.1007/s10562-008-9573-7. DOI
Broutin P.-E., Hilty P., Thomas A.W. An efficient synthesis of ortho-N-Boc-arylmethyl ketone derivatives. Tetrahedron Lett. 2003;44:6429–6432. doi: 10.1016/S0040-4039(03)01597-1. DOI
Kolosov M.A., Orlov V.D. 5-Thiazolyl derivatives of 4-aryl-3,4-dihydropyrimidin-2(1H)-ones. Chem. Heterocycl. Compd. 2008;44:1418–1420. doi: 10.1007/s10593-009-0204-z. DOI
Hu B., Ellingboe J., Han S., Largis E., Lim K., Malamas M., Mulvey R., Niu C., Oliphant A., Pelletier J., et al. Novel (4-piperidin-1-yl)-phenyl sulfonamides as potent and selective human β3 agonists. Bioorg. Med. Chem. 2001;9:2045–2059. doi: 10.1016/S0968-0896(01)00114-6. PubMed DOI
Pan Y., Li P., Xie S., Tao Y., Chen D., Dai M., Hao H., Huang L., Wang Y., Wang L., et al. Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents. Bioorg. Med. Chem. Lett. 2016;26:4146–4153. doi: 10.1016/j.bmcl.2016.01.066. PubMed DOI
Pancholia S., Dhameliya T.M., Shah P., Jadhavar P.S., Sridevi J.P., Yogeshwari P., Sriram D., Chakraborti A.K. Benzo[d]thiazol-2-yl(piperazin-1-yl)methanones as new anti-mycobacterial chemotypes: Design, synthesis, biological evaluation and 3D-QSAR studies. Eur. J. Med. Chem. 2016;116:187–199. doi: 10.1016/j.ejmech.2016.03.060. PubMed DOI
Rajkhowa S., Deka R.C. DFT Based QSAR/QSPR models in the development of novel anti-tuberculosis drugs targeting Mycobacterium tuberculosis. Curr. Pharm. Des. 2014;20:4455–4473. doi: 10.2174/1381612819666131118165824. PubMed DOI
Joshi S.D., More U.A., Aminabhavi T.M., Badiger A.M. Two- and three-dimensional QSAR studies on a set of antimycobacterial pyrroles: CoMFA, topomer CoMFA, and HQSAR. Med. Chem. Res. 2014;23:107–126. doi: 10.1007/s00044-013-0607-3. DOI
Pliška V., Testa B., van de Waterbeemd H. Lipophilicity in drug action and toxicology. In: Mannhold R., Kubinyi H., Timmerman H., editors. Methods and Principles of Medicinal Chemistry. Volume 4. Wiley-VCh Publishers; Weinheim, Germany: 1996. pp. 1–6.
Ottaviani M.F., Leonardis I., Cappiello A., Cangiotti M., Mazzeo R., Trufelli H., Palma P. Structural modifications and adsorption capability of C18-silica/binary solvent interphases studied by EPR and RP-HPLC. J. Colloid Interface Sci. 2010;352:512–519. doi: 10.1016/j.jcis.2010.08.080. PubMed DOI
Snyder L.R., Dolan J.W. Initial experiments in high-performance liquid chromatographic method development I. Use of a starting gradient run. J. Chromatogr. A. 1996;721:3–14. doi: 10.1016/0021-9673(95)00770-9. DOI
Du Ch.M., Valko K., Bevan Ch., Reynolds D., Abraham M.H. Rapid method for estimating octanol–water partition coefficient (log Poct) from isocratic RP-HPLC and a hydrogen bond acidity term (A) J. Liqud Chromatogr. Relat. Technol. 2001;24:635–649. doi: 10.1081/JLC-100103400. DOI
Terada H. Determination of log Poct by high-performance liquid chromatography, and its application in the study of Quantitative Structure–Activity Relationships. Quant. Struct. Act. Relat. 1986;5:81–88. doi: 10.1002/qsar.19860050302. DOI
Snyder L.R., Dolan J.W., Grant J.R. Gradient elution in high-performance liquid chromatography: I. Theoretical basis for reversed-phase systems. J. Chromatogr. A. 1979;165:3–30. doi: 10.1016/S0021-9673(00)85726-X. DOI
Valkó K., Snyder L.R., Glajch J.L. Retention in reversed-phase liquid chromatography as a function of mobile-phase composition. J. Chromatogr. A. 1993;656:501–520. doi: 10.1016/0021-9673(93)80816-Q. DOI
Soczewiński E. Mechanistic molecular model of liquid–solid chromatography: Retention–eluent composition relationships. J. Chromatogr. A. 2002;965:109–116. doi: 10.1016/S0021-9673(01)01278-X. PubMed DOI
Vrakas D., Panderi I., Hadjipavlou-Litina D., Tsantili-Kakoulidou A. Investigation of the relationships between log P and various chromatographic indices for a series of substituted coumarins. Evaluation of their similarity/dissimilarity using multivariate statistics. QSAR Comb. Sci. 2005;24:254–260. doi: 10.1002/qsar.200430898. DOI
Sztanke K., Markowski W., Świeboda R., Polak B. Lipophilicity of novel antitumour and analgesic active 8-aryl-2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazine-3,4-dione derivatives determined by reversed-phase HPLC and computational methods. Eur. J. Med. Chem. 2010;45:2644–2649. doi: 10.1016/j.ejmech.2010.01.068. PubMed DOI
Yadav L.D.S. Ultraviolet and visible spectroscopy. In: Yadav L.D.S., editor. Organic Spectroscopy. Springer; Amsterdam, The Netherlands: 2005. pp. 7–51.
Férriz J.M., Vávrová K., Kunc F., Imramovský A., Stolaříková J., Vavříková E., Vinšová J. Salicylanilide carbamates: Antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. 2010;18:1054–1061. doi: 10.1016/j.bmc.2009.12.055. PubMed DOI
Clinical and Laboratory Standards Institute (CLSI) Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard. 8th ed. CLSI; Wayne, NJ, USA: 2012. pp. 10–56. CLSI Document M11-A8. PubMed
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. 24th ed. CLSI; Wayne, NJ, USA: 2014. pp. 106–211. Informational Supplement M100-S24.
Waisser K., Doležal R., Čižmárik J., Malík I., Kaustová J. The potential antituberculotics of the series of 2-hydroxy-3-(4-phenylpiperazin-1-yl)-propylphenylcarbamates. Folia Pharm. Univ. Carol. 2007;35–36:45–48.
Doležal M., Zitko J., Kešetovičová D., Kuneš J., Svobodová M. Substituted N-phenylpyrazine-2-carboxamides: Synthesis and antimycobacterial evaluation. Molecules. 2009;14:4180–4189. doi: 10.3390/molecules14104180. PubMed DOI PMC
Čižmárik J., Waisser K., Doležal R. QSAR Study of antimicrobial activity of esters of substituted phenylcarbamic acid. Acta Fac. Pharm. Univ. Comen. 2008;55:90–95.
Timmins G.S., Deretic V. Mechanisms of action of isoniazid. Mol. Microbiol. 2006;62:1220–1227. doi: 10.1111/j.1365-2958.2006.05467.x. PubMed DOI
Forbes M., Kuck N.A., Peets E.A. Mode of action of ethambutol. J. Bacteriol. 1962;84:1099–1103. PubMed PMC
Jena L., Waghmare P., Kashikar S., Kumar S., Harinath B.C. Computational approach to understanding the mechanism of action of isoniazid, an anti-TB drug. Int. J. Mycobacteriol. 2014;3:276–282. doi: 10.1016/j.ijmyco.2014.08.003. PubMed DOI
Kuck N.A., Peets E.A., Forbes M. Mode of action of ethambutol on Mycobacterium tuberculosis, strain H37Rv. Am. Rev. Respir. Dis. 1963;87:905–906. PubMed
Mikusová K., Slayden R.A., Besra G.S., Brennan P.J. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother. 1995;39:2484–2489. doi: 10.1128/AAC.39.11.2484. PubMed DOI PMC
Lata M., Sharma D., Kumar B., Deo N., Tiwari P.K., Bisht D., Venkatesan K. Proteome analysis of ofloxacin and moxifloxacin induced Mycobacterium tuberculosis isolates by proteomic approach. Protein Pept. Lett. 2015;22:362–371. doi: 10.2174/0929866522666150209113708. PubMed DOI
Aubry A., Pan X.S., Fisher L.M., Jarlier V., Cambau E. Mycobacterium tuberculosis DNA gyrase: Interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob. Agents Chemother. 2004;48:1281–1288. doi: 10.1128/AAC.48.4.1281-1288.2004. PubMed DOI PMC
Brennan P.J. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis. 2003;83:91–97. doi: 10.1016/S1472-9792(02)00089-6. PubMed DOI
De Wijs H., Jollès P. Cell walls of three strains of mycobacteria (Mycobacterium phlei, Mycobacterium fortuitum and Mycobacterium kansasii): Preparation, analysis and digestion by lysozymes of different origins. Biochim. Biophys. Acta. 1964;83:326–332. doi: 10.1016/0926-6526(64)90010-2. PubMed DOI
Suffness M., Douros J. Current status of the NCI plant and animal product program. J. Nat. Prod. 1982;45:1–14. doi: 10.1021/np50019a001. PubMed DOI
Witek S., Bielawski J., Bielawska A. Synthesis of N-(formylphenyl)- and N-(acetophenyl) derivatives of urea and carbamic acid. J. Prakt. Chem. 1979;321:804–812. doi: 10.1002/prac.19793210512. DOI
Takeuchi H., Mastubara E. Electrophilic aromatic N-substitution by ethoxycarbonylnitrenium ion generated from ethyl azidoformate in the presence of trifluoroacetic acid. J. Chem. Soc. Perkin Trans. 1984;1:981–985. doi: 10.1039/p19840000981. DOI
Park Ch.-H., Givens R.S. New photoactivated protecting groups. 6. p-Hydroxyphenacyl: A phototrigger for chemical and biochemical probes. J. Am. Chem. Soc. 1997;119:2453–2463. doi: 10.1021/ja9635589. DOI
Basterfield S., Woods E.L., Wright H.N. Studies in urethans. III. The preparation of various substituted urethans. J. Am. Chem. Soc. 1926;48:2371–2375. doi: 10.1021/ja01420a018. DOI
Smith Broadbent H., Chu C.-Y. The carbethoxylation products of p-aminoacetophenone and p-dimethylaminoacetophenone. J. Am. Chem. Soc. 1953;75:226–227. doi: 10.1021/ja01097a502. DOI
Sigman E.M., Autrey T., Schuster G.B. Aroylnitrenes with singlet ground states: Photochemistry of acetyl-substituted aroyl and aryloxycarbonyl azides. J. Am. Chem. Soc. 1988;110:4297–4305. doi: 10.1021/ja00221a032. DOI
Vettorazzi M., Angelina E., Lima S., Gonec T., Otevrel J., Marvanova P., Padrtova T., Mokry P., Bobal P., Acosta L.M., et al. An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors. Eur. J. Med. Chem. 2017;139:461–481. doi: 10.1016/j.ejmech.2017.08.017. PubMed DOI PMC
Bietti G., Cereda E., Donetti A., del Soldato P., Giachetti A., Micheletti R. Guanidino-heterocyclyl-phenyl-amidines and Salts Thereof. No. US4548944 A. [(accessed on 12 November 2017)];U.S. Patent. Available online: https://encrypted.google.com/patents/US4548944?cl=un.
Rather J.B., Reid E.E. The identification of acids. IV. Phenacyl esters. J. Am. Chem. Soc. 1919;41:75–83. doi: 10.1021/ja01458a009. DOI
Dross K., Rekker R.F., de Vries G., Mannhold R. The lipophilic behaviour of organic compounds: 3. The search for interconnections between reversed-phase chromatographic data and log Pfoct values. Quant. Struct. Act. Relat. 1999;18:549–557. doi: 10.1002/(SICI)1521-3838(199812)17:06<549::AID-QSAR549>3.3.CO;2-T. DOI
Kulig K., Malawska B. Estimation of the lipophilicity of antiarrhythmic and antihypertensive active 1-substituted pyrrolidin-2-one and pyrrolidine derivatives. Biomed. Chromatogr. 2003;17:318–324. doi: 10.1002/bmc.246. PubMed DOI
Özden S., Atabey D., Yıldız S., Göker H. Synthesis, potent anti-staphylococcal activity and QSARs of some novel 2-anilinobenzazoles. Eur. J. Med. Chem. 2008;43:1390–1402. doi: 10.1016/j.ejmech.2007.10.009. PubMed DOI
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benz-amides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC
Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Chambel B., Pereira D., Kollar P., Imramovsky A., O’Mahony J., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC
Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI
Morgan J.A., Tatar J.F. Calculation of the residual sum of squares for all possible regressions. Technometrics. 1972;14:317–325. doi: 10.1080/00401706.1972.10488918. DOI
Cheng B., Tong H. On residual sums of squares in non-parametric autoregression. Stoch. Process. Their Appl. 1983;48:157–174. doi: 10.1016/0304-4149(93)90112-H. DOI
Kubinyi H. QSAR: Hansch Analysis and Related Approaches. In: Mannhold R., Krogsgaard-Larsen P., Timmerman H., editors. Methods and Principles in Medicinal Chemistry. Volume 1. Wiley-VCh Verlag; Weinheim, Germany: 1993. pp. 22–56.
Weisberg S. Multiple Regression. In: Weisberg S., editor. Applied Linear Regression. 3rd ed. Wiley-Interscience (John Wiley and Sons); Hoboken, NJ, USA: 2005. pp. 47–68. DOI
Nakagawa S., Schielzeth H. General and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013;4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x. DOI
Mevik B.H., Cederkvist H.R. Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR) J. Chemom. 2004;18:422–429. doi: 10.1002/cem.887. DOI
Ying X., Yang L., Zha H. A fast algorithm for multidimensional ellipsoid-specific fitting by minimizing a new defined vector norm of residuals using semidefinite programming. IEEE Trans. Pattern Anal. Mach. Intell. 2012;34:1856–1863. doi: 10.1109/TPAMI.2012.109. PubMed DOI
Dibasic Derivatives of Phenylcarbamic Acid against Mycobacterial Strains: Old Drugs and New Tricks?
Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides †