Arylaminopropanone Derivatives as Potential Cholinesterase Inhibitors: Synthesis, Docking Study and Biological Evaluation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32290227
PubMed Central
PMC7180927
DOI
10.3390/molecules25071751
PII: molecules25071751
Knihovny.cz E-zdroje
- Klíčová slova
- N-phenylcarbamate, acetylcholinesterase, arylaminopropanone, butyrylcholinesterase, enzyme assays, molecular modelling,
- MeSH
- aktivace enzymů účinky léků MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- propanolaminy chemická syntéza chemie farmakologie MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholinesterasové inhibitory MeSH
- propanolaminy MeSH
Neurodegenerative diseases in which the decrease of the acetylcholine is observed are growing worldwide. In the present study, a series of new arylaminopropanone derivatives with N-phenylcarbamate moiety (1-16) were prepared as potential acetylcholinesterase and butyrylcholinesterase inhibitors. In vitro enzyme assays were performed; the results are expressed as a percentage of inhibition and the IC50 values. The inhibitory activities were compared with reference drugs galantamine and rivastigmine showing piperidine derivatives (1-3) as the most potent. A possible mechanism of action for these compounds was determined from a molecular modelling study by using combined techniques of docking, molecular dynamics simulations and quantum mechanics calculations.
Zobrazit více v PubMed
World Health Organization . Dementia: A Public Health Priority. World Health Organization; Geneva, Switzerland: 2012.
Craig L.A., Hong N.S., McDonald R.J. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci. Biobehav. Rev. 2011;35:1397–1409. doi: 10.1016/j.neubiorev.2011.03.001. PubMed DOI
Brown D.A. Acetylcholine. Br. J. Pharmacol. 2006;147:120–126. doi: 10.1038/sj.bjp.0706474. PubMed DOI PMC
Lane R.M., Potkin S.G., Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 2006;9:101–124. doi: 10.1017/S1461145705005833. PubMed DOI
Rotundo R.L. Biogenesis, assembly and trafficking of acetylcholinesterase. J. Neurochem. 2017;142:52–58. doi: 10.1111/jnc.13982. PubMed DOI PMC
Li Q., Yang H., Chen Y., Sun H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Eur. J. Med. Chem. 2017;132:294–309. doi: 10.1016/j.ejmech.2017.03.062. PubMed DOI
Sussman J.L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science. 1991;253:872–879. doi: 10.1126/science.1678899. PubMed DOI
Kryger G., Harel M., Giles K., Toker L., Velan B., Lazar A., Kronman C., Barak D., Ariel N., Shafferman A., et al. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr. D Biol. Crystallogr. 2000;56:1385–1394. doi: 10.1107/S0907444900010659. PubMed DOI
Harel M., Kryger G., Rosenberry T.L., Mallender W.D., Lewis T., Fletcher R.J., Guss J.M., Silman I., Sussman J.L. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci. 2000;9:1063–1072. doi: 10.1110/ps.9.6.1063. PubMed DOI PMC
Šinko G. Assessment of scoring functions and in silico parameters for AChE-ligand interactions as a tool for predicting inhibition potency. Chem. Biol. Interact. 2019;308:216–223. doi: 10.1016/j.cbi.2019.05.047. PubMed DOI
Nicolet Y., Lockridge O., Masson P., Fontecilla-Camps J.C., Nachon F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 2003;278:41141–41147. doi: 10.1074/jbc.M210241200. PubMed DOI
Colletier J.P., Fournier D., Greenblatt H.M., Stojan J., Sussman J.L., Zaccai G., Silman I., Weik M. Structural insights into substrate traffic and inhibition in acetylcholinesterase. EMBO J. 2006;25:2746–2756. doi: 10.1038/sj.emboj.7601175. PubMed DOI PMC
Rosenberry T.L., Brazzolotto X., Macdonald I.R., Wandhammer M., Trovaslet-Leroy M., Darvesh S., Nachon F. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules. 2017;22:2098. doi: 10.3390/molecules22122098. PubMed DOI PMC
Dvir H., Silman I., Harel M., Rosenberry T.L., Sussman J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 2010;187:10–22. doi: 10.1016/j.cbi.2010.01.042. PubMed DOI PMC
Sussman J.L., Harel M., Silman I. Three-dimensional structure of acetylcholinesterase and of its complexes with anticholinesterase drugs. Chem. Biol. Interact. 1993;87:187–197. doi: 10.1016/0009-2797(93)90042-W. PubMed DOI
Wu M.Y., Esteban G., Brogi S., Shionoya M., Wang L., Campiani G., Unzeta M., Inokuchi T., Butini S., Marco-Contelles J. Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation. Eur. J. Med. Chem. 2016;121:864–879. doi: 10.1016/j.ejmech.2015.10.001. PubMed DOI
Harvey A.L. The pharmacology of galanthamine and its analogues. Pharmacol. Ther. 1995;68:113–128. doi: 10.1016/0163-7258(95)02002-0. PubMed DOI
Kandiah N., Pai M.C., Senanarong V., Looi I., Ampil E., Park K.W., Karanam A.K., Christopher S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging. 2017;12:697–707. doi: 10.2147/CIA.S129145. PubMed DOI PMC
Bajda M., Łątka K., Hebda M., Jończyk J., Malawska B. Novel carbamate derivatives as selective butyrylcholinesterase inhibitors. Bioorgan. Chem. 2018;78:29–38. doi: 10.1016/j.bioorg.2018.03.003. PubMed DOI
Ghosh A.K., Brindisi M. Organic Carbamates in Drug Design and Medicinal Chemistry. J. Med. Chem. 2015;58:2895–2940. doi: 10.1021/jm501371s. PubMed DOI PMC
Vorčáková K., Májeková M., Horáková E., Drabina P., Sedlák M., Štěpánková Š. Synthesis and characterization of new inhibitors of cholinesterases based on N-phenylcarbamates: In vitro study of inhibitory effect, type of inhibition, lipophilicity and molecular docking. Bioorgan. Chem. 2018;78:280–289. doi: 10.1016/j.bioorg.2018.03.012. PubMed DOI
Bosak A., Smilović I.G., Štimac A., Vinković V., Šinko G., Kovarik Z. Peripheral site and acyl pocket define selective inhibition of mouse butyrylcholinesterase by two biscarbamates. Arch. Biochem. Biophys. 2013;529:140–145. doi: 10.1016/j.abb.2012.11.012. PubMed DOI
Darvesh S., Darvesh K.V., McDonald R.S., Mataija D., Walsh R., Mothana S., Lockridge O., Martin E. Carbamates with Differential Mechanism of Inhibition Toward Acetylcholinesterase and Butyrylcholinesterase. J. Med. Chem. 2008;51:4200–4212. doi: 10.1021/jm8002075. PubMed DOI
Bosak A., Gazić Smilović I., Šinko G., Vinković V., Kovarik Z. Metaproterenol, Isoproterenol, and Their Bisdimethylcarbamate Derivatives as Human Cholinesterase Inhibitors. J. Med. Chem. 2012;55:6716–6723. doi: 10.1021/jm300289k. PubMed DOI
Kettmann V., Csöllei J., Račanská E., Švec P. Synthesis and structure-activity relationships of new beta-adrenoreceptor antagonists. Evidence for the electrostatic requirements for beta-adrenoreceptor antagonistrs. Eur. J. Med. Chem. 1991;26:843–851. doi: 10.1016/0223-5234(91)90127-9. DOI
Goněc T., Malík I., Csöllei J., Jampílek J., Stolaříková J., Solovič I., Mikuš P., Keltošová S., Kollár P., O’Mahony J., et al. Synthesis and In Vitro Antimycobacterial Activity of Novel N-Arylpiperazines Containing an Ethane-1,2-diyl Connecting Chain. Molecules. 2017;22:2100. doi: 10.3390/molecules22122100. PubMed DOI PMC
Fan P., Terrier L., Hay A.E., Marston A., Hosttetmann K. Antioxidant and enzyme inhibition activities and chemical profiles of Polygonum sachalinensis F. Schmidt ex Maxim (Polygonaceae) Fitoterapia. 2010;81:124–131. doi: 10.1016/j.fitote.2009.08.019. PubMed DOI
Morris G., Huey R., Lindstrom W., Sanner M., Belew R., Goodsell D., Olson A. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Case D.A., Darden T.A., Cheatham T.E., Simmerling C.L., Wang J., Duke R.E., Luo R., Walker R.C., Zhang W., Merz K.M., et al. AMBER 12 OR. University of California; San Francisco, CA, USA: 2012.
Bader R. Atoms in Molecules: A Quantum Theory. Oxford University Press; Oxford, UK: 1994.
Greenblatt H.M., Kryger G., Lewis T., Silman I., Sussman J.L. Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3 A resolution. FEBS Lett. 1999;463:321–326. doi: 10.1016/S0014-5793(99)01637-3. PubMed DOI
Ortiz J., Garro A., Pigni N., Agüero M.B., Roitman G., Slanis A., Enriz R.D., Feresin G.E., Bastida J., Tapia A. Colinesterase-inhibitory effect and in silico analysis of alkaloids from bulbs of Hieronymiella species. Phytomedicine. 2018;39:66–74. doi: 10.1016/j.phymed.2017.12.020. PubMed DOI
Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J., Dror R., Shaw D. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinform. 2010;78:1950–1958. doi: 10.1002/prot.22711. PubMed DOI PMC
Wang J., Wolf R., Caldwell J., Kollman P., Case D. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI
Jorgensen W., Chandrasekhar J., Madura J., Impey R., Klein M. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Ryckaert J.-P., Ciccotti G., Berendsen H. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI
Izaguirre J., Catarello D., Wozniak J., Skeel R. Langevin stabilization of molecular dynamics. J. Chem. Phys. 2001;114:2090–2098. doi: 10.1063/1.1332996. DOI
The PyMOL Molecular Graphics System, Version 1.8. Schrödinger, LLC; New York, NY, USA: 2015.
Padrtova T., Marvanova P., Odehnalova K., Kubinova R., Parravicini O., Garro A., Enriz R.D., Humpa O., Oravec M., Mokry P. Synthesis, Analysis, Cholinesterase-Inhibiting Activity and Molecular Modelling Studies of 3-(Dialkylamino)-2-hydroxypropyl 4-[(Alkoxy-carbonyl)amino]benzoates and Their Quaternary Ammonium Salts. Molecules. 2017;22:2048. doi: 10.3390/molecules22122048. PubMed DOI PMC
Onufriev A., Bashford D., Case D.A. Modification of the Generalized Born Model Suitable for Macromolecules. J. Phys. Chem. B. 2000;104:3712–3720. doi: 10.1021/jp994072s. DOI
Lu T., Chen F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI
Andujar S.A., Tosso R.D., Suvire F., Angelina E., Peruchena N., Cabedo N., Cortes D.E., Enriz R.D. Searching the “Biological Relevant” Conformation of Dopamine: A Computational Approach. J. Chem. Inf. Model. 2012;52:99–112. doi: 10.1021/ci2004225. PubMed DOI
Tosso R.D., Andujar S.A., Gutierrez L., Angelina E., Rodriguez R., Nogueras M., Baldoni H., Suvire F.D., Cobo J., Enriz R.D. Molecular modeling study of dihydrofolate reductase inhibitors. Molecular dynamics simulations, quantum mechanical calculations, and experimental corroboration. J. Chem. Inf. Model. 2013;53:2018–2032. doi: 10.1021/ci400178h. PubMed DOI
Parraga J., Andujar S.A., Rojas S., Gutierrez L.J., El Aouad N., Sanz M.J., Enriz D., Cabedo N., Cortes D. Dopaminergic isoquinolines with hexahydrocyclopenta[ij]-isoquinolines as D 2 -like selective ligands. Eur. J. Med. Chem. 2016;122:27–42. doi: 10.1016/j.ejmech.2016.06.009. PubMed DOI
Parraga J., Cabedo N., Andujar S.A., Piqueras L., Moreno L., Galan A., Angelina E., Enriz D., Ivorra M.D., Sanz M.J., et al. 2,3,9- and 2,3,11-Trisubstituted tetrahydroprotoberberines as D 2 dopaminergic ligands. Eur. J. Med. Chem. 2013;68:150–166. doi: 10.1016/j.ejmech.2013.07.036. PubMed DOI
Angelina E., Andujar S.A., Tosso R.D., Enriz R.D., Peruchena N. Non-covalent interactions in receptor-ligand complexes. A study based on the electron charge density. J. Phys. Org. Chem. 2014;27:128–134. doi: 10.1002/poc.3250. DOI