De novo SCN8A and inherited rare CACNA1H variants associated with severe developmental and epileptic encephalopathy
Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
34399820
PubMed Central
PMC8365958
DOI
10.1186/s13041-021-00838-y
PII: 10.1186/s13041-021-00838-y
Knihovny.cz E-resources
- Keywords
- CACNA1H, Calcium channel, Cav3.2 channel, Channelopathy, Encephalopathy, Epilepsy, Ion channels, Nav1.6 channel, SCN8A, Sodium channel,
- MeSH
- Gain of Function Mutation MeSH
- Point Mutation MeSH
- Gene Duplication MeSH
- Epilepsy, Tonic-Clonic genetics MeSH
- Ion Channel Gating genetics physiology MeSH
- Genetic Predisposition to Disease MeSH
- Humans MeSH
- Mutation, Missense MeSH
- Abnormalities, Multiple genetics MeSH
- NAV1.6 Voltage-Gated Sodium Channel genetics physiology MeSH
- Infant, Newborn MeSH
- Drug Resistant Epilepsy genetics MeSH
- Pedigree MeSH
- Scoliosis genetics MeSH
- Calcium Channels, T-Type genetics physiology MeSH
- Developmental Disabilities genetics MeSH
- Check Tag
- Humans MeSH
- Infant, Newborn MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- CACNA1H protein, human MeSH Browser
- NAV1.6 Voltage-Gated Sodium Channel MeSH
- SCN8A protein, human MeSH Browser
- Calcium Channels, T-Type MeSH
Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies that are characterized by seizures and developmental delay. DEEs are primarily attributed to genetic causes and an increasing number of cases have been correlated with variants in ion channel genes. In this study, we report a child with an early severe DEE. Whole exome sequencing showed a de novo heterozygous variant (c.4873-4881 duplication) in the SCN8A gene and an inherited heterozygous variant (c.952G > A) in the CACNA1H gene encoding for Nav1.6 voltage-gated sodium and Cav3.2 voltage-gated calcium channels, respectively. In vitro functional analysis of human Nav1.6 and Cav3.2 channel variants revealed mild but significant alterations of their gating properties that were in general consistent with a gain- and loss-of-channel function, respectively. Although additional studies will be required to confirm the actual pathogenic involvement of SCN8A and CACNA1H, these findings add to the notion that rare ion channel variants may contribute to the etiology of DEEs.
Department of Pathophysiology 3rd Faculty of Medicine Charles University Prague Czech Republic
Department of Pediatric Neurology Mafraq Hospital Abu Dhabi United Arab Emirates
Department of Pediatrics Tawam Hospital Al Ain United Arab Emirates
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Raga S, Specchio N, Rheims S, Wilmshurst JM. Developmental and epileptic encephalopathies: recognition and approaches to care. Epileptic Disord. 2021;23(1):40–52. doi: 10.1684/epd.2021.1244. PubMed DOI
Happ HC, Carvill GL. A 2020 view on the genetics of developmental and epileptic encephalopathies. Epilepsy Curr. 2020;20(2):90–96. doi: 10.1177/1535759720906118. PubMed DOI PMC
Morrison-Levy N, Borlot F, Jain P, Whitney R. Early-onset developmental and epileptic encephalopathies of infancy: an overview of the genetic basis and clinical features. Pediatr Neurol. 2021;116:85–94. doi: 10.1016/j.pediatrneurol.2020.12.001. PubMed DOI
Zhao J, O’Leary ME, Chahine M. Regulation of Nav1.6 and Nav1.8 peripheral nerve Na+ channels by auxiliary β-subunits. J Neurophysiol. 2011;106(2):608–619. doi: 10.1152/jn.00107.2011. PubMed DOI PMC
Smith MR, Smith RD, Plummer NW, Meisler MH, Goldin AL. Functional analysis of the mouse Scn8a sodium channel. J Neurosci. 1998;18(16):6093–6102. doi: 10.1523/JNEUROSCI.18-16-06093.1998. PubMed DOI PMC
Veeramah KR, O’Brien JE, Meisler MH, Cheng X, Dib-Hajj SD, Waxman SG, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet. 2012;90(3):502–510. doi: 10.1016/j.ajhg.2012.01.006. PubMed DOI PMC
Meisler MH, Helman G, Hammer MF, Fureman BE, Gaillard WD, Goldin AL, et al. SCN8A encephalopathy: research progress and prospects. Epilepsia. 2016;57(7):1027–1035. doi: 10.1111/epi.13422. PubMed DOI PMC
Wang J, Gao H, Bao X, Zhang Q, Li J, Wei L, et al. SCN8A mutations in Chinese patients with early onset epileptic encephalopathy and benign infantile seizures. BMC Med Genet. 2017;18(1):104. doi: 10.1186/s12881-017-0460-1. PubMed DOI PMC
Kim HJ, Yang D, Kim SH, Kim B, Kim HD, Lee JS, et al. Genetic and clinical features of SCN8A developmental and epileptic encephalopathy. Epilepsy Res. 2019;158:106222. doi: 10.1016/j.eplepsyres.2019.106222. PubMed DOI
Wagnon JL, Barker BS, Hounshell JA, Haaxma CA, Shealy A, Moss T, et al. Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy. Ann Clin Transl Neurol. 2016;3(2):114–123. doi: 10.1002/acn3.276. PubMed DOI PMC
Barker BS, Ottolini M, Wagnon JL, Hollander RM, Meisler MH, Patel MK. The SCN8A encephalopathy mutation p.Ile1327Val displays elevated sensitivity to the anticonvulsant phenytoin. Epilepsia. 2016;57(9):1458–1466. doi: 10.1111/epi.13461. PubMed DOI PMC
Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet. 2020;57(1):1–10. doi: 10.1136/jmedgenet-2019-106163. PubMed DOI PMC
Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT. CACNA1H mutations in autism spectrum disorders. J Biol Chem. 2006;281(31):22085–22091. doi: 10.1074/jbc.M603316200. PubMed DOI
Rzhepetskyy Y, Lazniewska J, Blesneac I, Pamphlett R, Weiss N. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing. Channels (Austin) 2016;10(6):466–477. doi: 10.1080/19336950.2016.1204497. PubMed DOI PMC
Stringer RN, Jurkovicova-Tarabova B, Huang S, Haji-Ghassemi O, Idoux R, Liashenko A, et al. A rare CACNA1H variant associated with amyotrophic lateral sclerosis causes complete loss of Cav3.2 T-type channel activity. Mol Brain. 2020;13(1):33. doi: 10.1186/s13041-020-00577-6. PubMed DOI PMC
Carter MT, McMillan HJ, Tomin A, Weiss N. Compound heterozygous CACNA1H mutations associated with severe congenital amyotrophy. Channels (Austin) 2019;13(1):153–161. doi: 10.1080/19336950.2019.1614415. PubMed DOI PMC
Ohmori I, Ouchida M, Kobayashi K, Jitsumori Y, Mori A, Michiue H, et al. CACNA1A variants may modify the epileptic phenotype of Dravet syndrome. Neurobiol Dis. 2013;50:209–217. doi: 10.1016/j.nbd.2012.10.016. PubMed DOI
Calhoun JD, Hawkins NA, Zachwieja NJ, Kearney JA. Cacna1g is a genetic modifier of epilepsy caused by mutation of voltage-gated sodium channel Scn2a. Epilepsia. 2016;57(6):e103–e107. doi: 10.1111/epi.13390. PubMed DOI PMC
Calhoun JD, Hawkins NA, Zachwieja NJ, Kearney JA. Cacna1g is a genetic modifier of epilepsy in a mouse model of Dravet syndrome. Epilepsia. 2017;58(8):e111–e115. doi: 10.1111/epi.13811. PubMed DOI PMC
The T-type calcium channelosome