Low-molecular weight chitosan enhances antibacterial effect of antibiotics and permeabilizes cytoplasmic membrane of Staphylococcus epidermidis biofilm cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.2.16/3.1.00/24503
Operational Programme Prague - Competitiveness
NPU I LO1601
National Programme of Sustainability I
PubMed
34291404
DOI
10.1007/s12223-021-00898-6
PII: 10.1007/s12223-021-00898-6
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- antiinfekční látky * MeSH
- biofilmy MeSH
- buněčná membrána MeSH
- chitosan * farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- molekulová hmotnost MeSH
- Staphylococcus epidermidis MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antiinfekční látky * MeSH
- chitosan * MeSH
This study evaluated the effect of low-molecular weight chitosan on Staphylococcus epidermidis, a common colonizer of joint implants and other prosthetic devices. We have also attempted to elucidate its mechanism of action. Chitosan was found to be effective against both the planktonic and biofilm cells (MIC80 35-40 mg/L; MBIC80 40-150 mg/L), in contrast to the antibiotics erythromycin and tetracycline with no antibiofilm activity (MBIC80 not found). In combination, chitosan had an additive effect with antibiotics on suspension growth of S. epidermidis (FICi 0.7-1.0), and the combinatory action caused a complete inhibition of biofilm metabolic activity in some cases. In addition, chitosan caused rapid cellular damage and enhanced antihaemolytic activity of tetracycline in combination towards S. epidermidis biofilm cells. Chitosan efficiently inhibited S. epidermidis growth acting via cell membrane damage, yet the extent of antimicrobial and antibiofilm activities was quite strain-specific. It was proved to be a very efficient antimicrobial agent worth further examination as a potent candidate in pharmaceutical research. Apart from antimicrobial activity, it also acted as antivirulence enhancing agent which is a very promising strategy for alternative infectious diseases treatment.
Zobrazit více v PubMed
Adrian M, Jeandet P, Douillet-Breuil AC, Tesson L, Bessis R (2000) Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J Agric Food Chem 48:6103–6105. https://doi.org/10.1021/jf0009910 PubMed DOI
Agwuh KN, MacGowan A (2006) Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 58:256–265. https://doi.org/10.1093/jac/dkl224 PubMed DOI
Amorena B, Gracia E, Monzon M, Leiva J, Oteiza C, Perez M, Alabart JL, Hernandez-Yago J (1999) Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J Antimicrob Chemother 44:43–55. https://doi.org/10.1093/jac/44.1.43 PubMed DOI
Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824 DOI
Asli A, Brouillette E, Ster C, Ghinet MG, Brzezinski R, Lacasse P, Jacques M, Malouin F (2017) Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus isolates associated with bovine mastitis. Plos One 12:1–23. https://doi.org/10.1371/journal.pone.0176988 DOI
Bandeira G, Sutili FJ, Gressler LT, Ely VL, Silveira BP, Tasca C, Reghelin M, Matter LB, Vargas APC, Baldisserotto B (2018) Antibacterial potential of phytochemicals alone or in combination with antimicrobials against fish pathogenic bacteria. J Appl Microbiol 125:655–665. https://doi.org/10.1111/jam.13906 DOI
Barczak AK, Hung DT (2009) Productive steps toward an antimicrobial targeting virulence. Curr Op Microbiol 12:490–496. https://doi.org/10.1016/j.mib.2009.06.012 DOI
Baron C (2010) Antivirulence drugs to target bacterial secretion systems. Curr Op Microbiol 13:100–105. https://doi.org/10.1016/j.mib.2009.12.003 DOI
Barretti P, Montelli AC, Batalha JEN, Caramori JCT, Cunha M (2009) The role of virulence factors in the outcome of staphylococcal peritonitis in CAPD patients. Bmc Infect Dis 9:1–8. https://doi.org/10.1186/1471-2334-9-212 DOI
Begin A, Van Calsteren MR (1999) Antimicrobial films produced from chitosan. Int J Biol Macromol 26:63–67. https://doi.org/10.1016/s0141-8130(99)00064-1 PubMed DOI
Branda SS, Vik A, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26. https://doi.org/10.1016/j.tim.2004.11.006 PubMed DOI
Carlson RP, Taffs R, Davison WM, Stewart PS (2008) Anti-biofilm properties of chitosan-coated surfaces. J Biomat Sci-Polym E 19:1035–1046. https://doi.org/10.1163/156856208784909372 DOI
Cerovsky V (2014) Antimicrobial peptides isolated from Insects. Chem Listy 108:344–353
Cobrado L, Azevedo MM, Silva-Dias A, Ramos JP, Pina-Vaz C, Rodrigues AG (2012) Cerium, chitosan and hamamelitannin as novel biofilm inhibitors? J Antimicrob Chemother 67:1159–1162. https://doi.org/10.1093/jac/dks007 PubMed DOI
Cobrado L, Silva-Dias A, Azevedo MM, Pina-Vaz C, Rodrigues AG (2013) in vivo antibiofilm effect of cerium, chitosan and hamamelitannin against usual agents of catheter-related bloodstream infections. J Antimicrob Chemother 68:126–130. https://doi.org/10.1093/jac/dks376 PubMed DOI
Costa EM, Silva S, Vicente S, Neto C, Castro PM, Veiga M, Madureira R, Tavaria F, Pintado MM (2017) Chitosan nanoparticles as alternative anti-staphylococci agents: bactericidal, antibiofilm and antiadhesive effects. Mat Sci Eng C-Mater 79:221–226. https://doi.org/10.1016/j.msec.2017.05.047 DOI
Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. https://doi.org/10.1126/science.284.5418.1318 PubMed DOI
Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–852. https://doi.org/10.1128/mmbr.64.4.847-867.2000 PubMed DOI PMC
Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21:703–714. https://doi.org/10.1016/j.fm.2004.02.008 DOI
Dmitriev BA, Holst O, Rietschel ET, Ehlers S (2004) Tertiary structure of Staphylococcus aureus cell wall murein. J Bacteriol 186:7141–7148. https://doi.org/10.1128/jb.186.21.7141-7148.2004 PubMed DOI PMC
Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182. https://doi.org/10.1016/j.foodchem.2008.11.047 DOI
Ehrlich GD, Ahmed A, Earl J, Hiller NL, Costerton JW, Stoodley P, Post JC, Demeo P, Hu FZ (2010) The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes. Fems Immunol Med Mic 59:269–279. https://doi.org/10.1111/j.1574-695X.2010.00704.x DOI
Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40. https://doi.org/10.1016/j.tim.2004.11.010 PubMed DOI
Goy RC, de Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polimeros 19:241–247 DOI
Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043. https://doi.org/10.1111/j.1462-5822.2009.01323.x PubMed DOI
Hayder J, Chaouch MA, Amira N, Ben Mansour M, Majdoub H, Chaubet F, Maaroufi RM (2018) Co-immobilization of chitosan and dermatan sulfate from Raja montagui skin on polyethylene terephthalate surfaces: characterization and antibiofilm activity. Int J Polym Mater Po 67:277–287. https://doi.org/10.1080/00914037.2017.1320664 DOI
Haynes K (2001) Virulence in Candida species. Trends Microbiol 9:591–596. https://doi.org/10.1016/s0966-842x(01)02237-5 PubMed DOI
Ishak SF, Ghazali AR, Zin NM, Basri DF (2016) Pterostilbene enhanced anti-methicillin resistant Staphylococcus aureus (MRSA) Activity of Oxacillin. Am J Infec Dis 12:1–10. https://doi.org/10.3844/ajidsp.2016.1.10 DOI
Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, Nesme X, Etienne J, Vandenesch F (2002) Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (Alleles), and human disease. Infect Immun 70:631–641. https://doi.org/10.1128/iai.70.2.631-641.2002 PubMed DOI PMC
Johnson BK, Abramovitch RB (2017) Small molecules that sabotage bacterial virulence. Trends Pharmacol Sci 38:339–362. https://doi.org/10.1016/j.tips.2017.01.004 PubMed DOI PMC
Jordan N, Newton J, Pearson J, Allen A (1998) A novel method for the visualization of the in situ mucus layer in rat and man. Clin Sci 95:97–106. https://doi.org/10.1042/cs19980081 DOI
Kašparová P, Vaňková E, Brázdová L, Lokočová K, Maťátková O, Masák J (2021) Antibiofilm agent pterostilbene is able to enhance antibiotics action against Staphylococcus epidermidis. Microb Pathogen 152. https://doi.org/10.1016/j.micpath.2020.104632
Khan F, Manivasagan P, Pham DTN, Oh J, Kim SK, Kim YM (2019) Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microb Pathogen 128:363–373. https://doi.org/10.1016/j.micpath.2019.01.033 DOI
Knudsen G, Sorum H, Press CM, Olafsen JA (1999) in situ adherence of Vibrio spp. to cryosections of Atlantic salmon, Salmo salar L., tissue. J Fish Dis 22:409–418. https://doi.org/10.1046/j.1365-2761.1999.00183.x DOI
Kolouchová I, Maťátková O, Paldrychová M, Kodeš Z, Kvasničková E, Sigler K, Čejková A, Šmidrkal J, Demnerová K, Masák J (2018) Resveratrol, pterostilbene, and baicalein: plant-derived anti-biofilm agents. Folia Microbiol 63:261–272. https://doi.org/10.1007/s12223-017-0549-0 DOI
Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012 PubMed DOI
Kumar M (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. https://doi.org/10.1016/S1381-5148(00)00038-9 DOI
Kumirska J, Weinhold MX, Thoming J, Stepnowski P (2011) Biomedical activity of chitin/chitosan based materials-influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers 3:1875–1901. https://doi.org/10.3390/polym3041875 DOI
Kvasničková E, Paulicek V, Paldrychova M, Jezdik R, Mat’atkova O, Masak J (2016) Aspergillus fumigatus DBM 4057 biofilm formation is inhibited by chitosan, in contrast to baicalein and rhamnolipid. World J Microb Biot 32:187–197. https://doi.org/10.1007/s11274-016-2146-9 DOI
Lin WT, Zhang YY, Tan HL, Ao HY, Duan ZL, He G, Tang TT (2016) Inhibited bacterial adhesion and biofilm formation on quaternized chitosan-loaded titania nanotubes with various diameters. Materials 9:155–167. https://doi.org/10.3390/ma9030155 DOI PMC
Liu H, Du YM, Wang XH, Sun LP (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95:147–155. https://doi.org/10.1016/j.ijfoodmicro.2004.01.022 PubMed DOI
Liu XF, Guan YL, Yang DZ, Li Z, De Yao K (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J App Polym Sci 79:1324–1335. https://doi.org/10.1002/1097-4628(20010214)79:7%3c1324::AID-APP210%3e3.0.CO;2-L DOI
Livermore DM (2000) Antibiotic resistance in staphylococci. Int J Antimicrob Agents 16:S3–S10 DOI
Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39. https://doi.org/10.1016/s0966-842x(00)01913-2 PubMed DOI
Males BM, Rogers WA, Parisi JT (1975) Virulence factors of biotypes of Staphylocccus epidermidis from clinical sources. J Clin Microbiol 1:256–261 DOI
Mantripragada VP, Jayasuriya AC (2016) Effect of dual delivery of antibiotics (vancomycin and cefazolin) and BMP-7 from chitosan microparticles on Staphylococcus epidermidis and pre-osteoblasts in vitro. Mat Sci Eng C-Mater 67:409–417. https://doi.org/10.1016/j.msec.2016.05.033 DOI
Maťátková O, Kolouchová I, Kvasničková E, Ježdík R, Masák J, Čejková A (2017) Synergistic action of amphotericin B and rhamnolipid in combination on Candida parapsilosis and Trichosporon cutaneum. Chem Pap 71:1471–1480. https://doi.org/10.1007/s11696-017-0141-8 DOI
Mikstacka R, Rimando AM, Ignatowicz E (2010) Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant Food Hum Nutr 65:57–63. https://doi.org/10.1007/s11130-010-0154-8 DOI
Mishra B, Wang GS (2017) Individual and combined effects of engineered peptides and antibiotics on Pseudomonas aeruginosa biofilms. Pharmaceuticals 10:1–15. https://doi.org/10.3390/ph10030058 DOI
Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, Giannini S, Arciola CR (2011) Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol 6:1329–1349. https://doi.org/10.2217/fmb.11.117 PubMed DOI
Monzon M, Oteiza C, Leiva J, Amorena B (2001) Synergy of different antibiotic combinations in biofilms of Staphylococcus epidermidis. J Antimicrob Chemother 48:793–801. https://doi.org/10.1093/jac/48.6.793 PubMed DOI
Muslim SN, Al Kadmy IMS, Ali ANM, Salman BK, Ahmad M, Khazaal SS, Hussein NH, Muslim SN (2018) Chitosan extracted from Aspergillus flavus shows synergistic effect, eases quorum sensing mediated virulence factors and biofilm against nosocomial pathogen Pseudomonas aeruginosa. Int J Biol Macromol 107:52–58. https://doi.org/10.1016/j.ijbiomac.2017.08.146 PubMed DOI
Nesuta O, Hexnerova R, Budesinsky M, Slaninova J, Bednarova L, Hadravova R, Straka J, Veverka V, Cerovsky V (2016) Antimicrobial peptide from the wild bee Hylaeus signatus venom and its analogues: structure-activity study and synergistic effect with antibiotics. J Nat Products 79:1073–1083. https://doi.org/10.1021/acs.jnatprod.5b01129 DOI
Peng ZX, Ao HY, Wang L, Guo SR, Tang TT (2015) Quaternised chitosan coating on titanium provides a self-protective surface that prevents bacterial colonisation and implant-associated infections. Rsc Advances 5:54304–54311. https://doi.org/10.1039/c5ra07540h DOI
Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678. https://doi.org/10.1016/j.progpolymsci.2009.04.001 DOI
Piras AM, Maisetta G, Sandreschi S, Gazzarri M, Bartoli C, Grassi L, Esin S, Chiellini F, Batoni G (2015) Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front Microbiol 6:372–382. https://doi.org/10.3389/fmicb.2015.00372 PubMed DOI PMC
Raafat D, von Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. App Environ Microbiol 74:3764–3773. https://doi.org/10.1128/aem.00453-08 DOI
Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465. https://doi.org/10.1021/bm034130m DOI
Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001 DOI
Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L (2013) Cell Viability Assays. Nati C Biotechnol Inf. Eli Lilly & Company and the National Center for Advancing Translational Sciences .
Rubini D, Banu SF, Hari BNV, Devi DR, Gowrishankar S, Pandian SK, Nithyanand P (2018) Chitosan extracted from marine biowaste mitigates staphyloxanthin production and biofilms of Methicillin-resistant Staphylococcus aureus. Food Chem Toxicol 118:733–744. https://doi.org/10.1016/j.fct.2018.06.017 PubMed DOI
Semedo MC, Karmali A, Fonseca L (2015) A novel colorimetric assay of b-D-glucans in Basidiomycete strains by alcian blue dye in a 96-Well Microtiter Plate. Biotechnol Prog 31:1526–1535. https://doi.org/10.1002/btpr.2163 DOI
Shagdarova BT, Il’ina AV, Varlamov VP (2016) Antibacterial activity of alkylated and acylated derivatives of low-molecular weight chitosan. Appl Biochem Micro 52:222–225. https://doi.org/10.1134/s0003683816020149 DOI
Shi ZL, Neoh KG, Kang ET, Wang W (2006) Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 27:2440–2449. https://doi.org/10.1016/j.biomaterials.2005.11.036 PubMed DOI
Singh R, Ray D, Das A, Sharma M (2010) Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 65:1955–1958. https://doi.org/10.1093/jac/dkq257 PubMed DOI
Tam JP, Wang SJ, Wong KH, Tan WL (2015) Antimicrobial Peptides from Plants Pharmaceuticals 8:711–757. https://doi.org/10.3390/ph8040711 PubMed DOI
Tan HL, Ao HY, Ma R, Lin WT, Tang TT (2014) in vivo effect of quaternized chitosan-loaded polymethylmethacrylate bone cement on methicillin-resistant Staphylococcus epidermidis infection of the tibial metaphysis in a rabbit model. Antimicrob Agents Chemother 58:6016–6023. https://doi.org/10.1128/aac.03489-14 PubMed DOI PMC
Tan HL, Ma R, Lin CC, Liu ZW, Tang TT (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14:1854–1869. https://doi.org/10.3390/ijms14011854 PubMed DOI PMC
Tavaria FK, Costa EM, Gens EJ, Malcata FX, Pintado ME (2013) Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol 40:1014–1019. https://doi.org/10.1111/1346-8138.12315 PubMed DOI
Thomas VL, Sanford BA, Moreno R, Ramsay MA (1997) Enzyme-linked lectinsorbent assay measures N-acetyl-D-glucosamine in matrix of biofilm produced by Staphylococcus epidermidis. Curr Microbiol 35:249–254. https://doi.org/10.1007/s002849900248 PubMed DOI
Thornton DCO, Fejes EM, DiMarco SF, Clancy KM (2007) Measurement of acid polysaccharides in marine and freshwater samples using alcian blue. Limnol Oceanogr-Meth 5:73–87. https://doi.org/10.4319/lom.2007.5.73 DOI
Vaňková E, Kašparová P, Dulíčková N, Čeřovský V (2020a) Combined effect of lasioglossin LL-III derivative with azoles against Candida Albicans virulence factors: biofilm formation, phospholipases, proteases and hemolytic activity. Fems Yeast Res 20:1–16. https://doi.org/10.1093/femsyr/foaa020 DOI
Vaňková E, Paldrychová M, Kašparová P, Lokočová K, Kodeš Z, Maťátková O, Kolouchová I, Masák J (2020b) Natural antioxidant pterostilbene as an effective antibiofilm agent, particularly for gram-positive cocci. World J Microbiol Biotech 30:101–114. https://doi.org/10.1007/s11274-020-02876-5 DOI
Wang XH, Du YM, Fan LH, Liu H, Hu Y (2005) Chitosan-metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study. Polym Bull 55:105–113. https://doi.org/10.1007/s00289-005-0414-1 DOI