Low-molecular weight chitosan enhances antibacterial effect of antibiotics and permeabilizes cytoplasmic membrane of Staphylococcus epidermidis biofilm cells

. 2021 Dec ; 66 (6) : 983-996. [epub] 20210721

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34291404

Grantová podpora
CZ.2.16/3.1.00/24503 Operational Programme Prague - Competitiveness
NPU I LO1601 National Programme of Sustainability I

Odkazy

PubMed 34291404
DOI 10.1007/s12223-021-00898-6
PII: 10.1007/s12223-021-00898-6
Knihovny.cz E-zdroje

This study evaluated the effect of low-molecular weight chitosan on Staphylococcus epidermidis, a common colonizer of joint implants and other prosthetic devices. We have also attempted to elucidate its mechanism of action. Chitosan was found to be effective against both the planktonic and biofilm cells (MIC80 35-40 mg/L; MBIC80 40-150 mg/L), in contrast to the antibiotics erythromycin and tetracycline with no antibiofilm activity (MBIC80 not found). In combination, chitosan had an additive effect with antibiotics on suspension growth of S. epidermidis (FICi 0.7-1.0), and the combinatory action caused a complete inhibition of biofilm metabolic activity in some cases. In addition, chitosan caused rapid cellular damage and enhanced antihaemolytic activity of tetracycline in combination towards S. epidermidis biofilm cells. Chitosan efficiently inhibited S. epidermidis growth acting via cell membrane damage, yet the extent of antimicrobial and antibiofilm activities was quite strain-specific. It was proved to be a very efficient antimicrobial agent worth further examination as a potent candidate in pharmaceutical research. Apart from antimicrobial activity, it also acted as antivirulence enhancing agent which is a very promising strategy for alternative infectious diseases treatment.

Zobrazit více v PubMed

Adrian M, Jeandet P, Douillet-Breuil AC, Tesson L, Bessis R (2000) Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J Agric Food Chem 48:6103–6105. https://doi.org/10.1021/jf0009910 PubMed DOI

Agwuh KN, MacGowan A (2006) Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 58:256–265. https://doi.org/10.1093/jac/dkl224 PubMed DOI

Amorena B, Gracia E, Monzon M, Leiva J, Oteiza C, Perez M, Alabart JL, Hernandez-Yago J (1999) Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J Antimicrob Chemother 44:43–55. https://doi.org/10.1093/jac/44.1.43 PubMed DOI

Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824 DOI

Asli A, Brouillette E, Ster C, Ghinet MG, Brzezinski R, Lacasse P, Jacques M, Malouin F (2017) Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus isolates associated with bovine mastitis. Plos One 12:1–23. https://doi.org/10.1371/journal.pone.0176988 DOI

Bandeira G, Sutili FJ, Gressler LT, Ely VL, Silveira BP, Tasca C, Reghelin M, Matter LB, Vargas APC, Baldisserotto B (2018) Antibacterial potential of phytochemicals alone or in combination with antimicrobials against fish pathogenic bacteria. J Appl Microbiol 125:655–665. https://doi.org/10.1111/jam.13906 DOI

Barczak AK, Hung DT (2009) Productive steps toward an antimicrobial targeting virulence. Curr Op Microbiol 12:490–496. https://doi.org/10.1016/j.mib.2009.06.012 DOI

Baron C (2010) Antivirulence drugs to target bacterial secretion systems. Curr Op Microbiol 13:100–105. https://doi.org/10.1016/j.mib.2009.12.003 DOI

Barretti P, Montelli AC, Batalha JEN, Caramori JCT, Cunha M (2009) The role of virulence factors in the outcome of staphylococcal peritonitis in CAPD patients. Bmc Infect Dis 9:1–8. https://doi.org/10.1186/1471-2334-9-212 DOI

Begin A, Van Calsteren MR (1999) Antimicrobial films produced from chitosan. Int J Biol Macromol 26:63–67. https://doi.org/10.1016/s0141-8130(99)00064-1 PubMed DOI

Branda SS, Vik A, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26. https://doi.org/10.1016/j.tim.2004.11.006 PubMed DOI

Carlson RP, Taffs R, Davison WM, Stewart PS (2008) Anti-biofilm properties of chitosan-coated surfaces. J Biomat Sci-Polym E 19:1035–1046. https://doi.org/10.1163/156856208784909372 DOI

Cerovsky V (2014) Antimicrobial peptides isolated from Insects. Chem Listy 108:344–353

Cobrado L, Azevedo MM, Silva-Dias A, Ramos JP, Pina-Vaz C, Rodrigues AG (2012) Cerium, chitosan and hamamelitannin as novel biofilm inhibitors? J Antimicrob Chemother 67:1159–1162. https://doi.org/10.1093/jac/dks007 PubMed DOI

Cobrado L, Silva-Dias A, Azevedo MM, Pina-Vaz C, Rodrigues AG (2013) in vivo antibiofilm effect of cerium, chitosan and hamamelitannin against usual agents of catheter-related bloodstream infections. J Antimicrob Chemother 68:126–130. https://doi.org/10.1093/jac/dks376 PubMed DOI

Costa EM, Silva S, Vicente S, Neto C, Castro PM, Veiga M, Madureira R, Tavaria F, Pintado MM (2017) Chitosan nanoparticles as alternative anti-staphylococci agents: bactericidal, antibiofilm and antiadhesive effects. Mat Sci Eng C-Mater 79:221–226. https://doi.org/10.1016/j.msec.2017.05.047 DOI

Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. https://doi.org/10.1126/science.284.5418.1318 PubMed DOI

Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–852. https://doi.org/10.1128/mmbr.64.4.847-867.2000 PubMed DOI PMC

Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21:703–714. https://doi.org/10.1016/j.fm.2004.02.008 DOI

Dmitriev BA, Holst O, Rietschel ET, Ehlers S (2004) Tertiary structure of Staphylococcus aureus cell wall murein. J Bacteriol 186:7141–7148. https://doi.org/10.1128/jb.186.21.7141-7148.2004 PubMed DOI PMC

Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182. https://doi.org/10.1016/j.foodchem.2008.11.047 DOI

Ehrlich GD, Ahmed A, Earl J, Hiller NL, Costerton JW, Stoodley P, Post JC, Demeo P, Hu FZ (2010) The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes. Fems Immunol Med Mic 59:269–279. https://doi.org/10.1111/j.1574-695X.2010.00704.x DOI

Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40. https://doi.org/10.1016/j.tim.2004.11.010 PubMed DOI

Goy RC, de Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polimeros 19:241–247 DOI

Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043. https://doi.org/10.1111/j.1462-5822.2009.01323.x PubMed DOI

Hayder J, Chaouch MA, Amira N, Ben Mansour M, Majdoub H, Chaubet F, Maaroufi RM (2018) Co-immobilization of chitosan and dermatan sulfate from Raja montagui skin on polyethylene terephthalate surfaces: characterization and antibiofilm activity. Int J Polym Mater Po 67:277–287. https://doi.org/10.1080/00914037.2017.1320664 DOI

Haynes K (2001) Virulence in Candida species. Trends Microbiol 9:591–596. https://doi.org/10.1016/s0966-842x(01)02237-5 PubMed DOI

Ishak SF, Ghazali AR, Zin NM, Basri DF (2016) Pterostilbene enhanced anti-methicillin resistant Staphylococcus aureus (MRSA) Activity of Oxacillin. Am J Infec Dis 12:1–10. https://doi.org/10.3844/ajidsp.2016.1.10 DOI

Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, Nesme X, Etienne J, Vandenesch F (2002) Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (Alleles), and human disease. Infect Immun 70:631–641. https://doi.org/10.1128/iai.70.2.631-641.2002 PubMed DOI PMC

Johnson BK, Abramovitch RB (2017) Small molecules that sabotage bacterial virulence. Trends Pharmacol Sci 38:339–362. https://doi.org/10.1016/j.tips.2017.01.004 PubMed DOI PMC

Jordan N, Newton J, Pearson J, Allen A (1998) A novel method for the visualization of the in situ mucus layer in rat and man. Clin Sci 95:97–106. https://doi.org/10.1042/cs19980081 DOI

Kašparová P, Vaňková E, Brázdová L, Lokočová K, Maťátková O, Masák J (2021) Antibiofilm agent pterostilbene is able to enhance antibiotics action against Staphylococcus epidermidis. Microb Pathogen 152.  https://doi.org/10.1016/j.micpath.2020.104632

Khan F, Manivasagan P, Pham DTN, Oh J, Kim SK, Kim YM (2019) Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microb Pathogen 128:363–373. https://doi.org/10.1016/j.micpath.2019.01.033 DOI

Knudsen G, Sorum H, Press CM, Olafsen JA (1999) in situ adherence of Vibrio spp. to cryosections of Atlantic salmon, Salmo salar L., tissue. J Fish Dis 22:409–418. https://doi.org/10.1046/j.1365-2761.1999.00183.x DOI

Kolouchová I, Maťátková O, Paldrychová M, Kodeš Z, Kvasničková E, Sigler K, Čejková A, Šmidrkal J, Demnerová K, Masák J (2018) Resveratrol, pterostilbene, and baicalein: plant-derived anti-biofilm agents. Folia Microbiol 63:261–272. https://doi.org/10.1007/s12223-017-0549-0 DOI

Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012 PubMed DOI

Kumar M (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. https://doi.org/10.1016/S1381-5148(00)00038-9 DOI

Kumirska J, Weinhold MX, Thoming J, Stepnowski P (2011) Biomedical activity of chitin/chitosan based materials-influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers 3:1875–1901. https://doi.org/10.3390/polym3041875 DOI

Kvasničková E, Paulicek V, Paldrychova M, Jezdik R, Mat’atkova O, Masak J (2016) Aspergillus fumigatus DBM 4057 biofilm formation is inhibited by chitosan, in contrast to baicalein and rhamnolipid. World J Microb Biot 32:187–197. https://doi.org/10.1007/s11274-016-2146-9 DOI

Lin WT, Zhang YY, Tan HL, Ao HY, Duan ZL, He G, Tang TT (2016) Inhibited bacterial adhesion and biofilm formation on quaternized chitosan-loaded titania nanotubes with various diameters. Materials 9:155–167. https://doi.org/10.3390/ma9030155 DOI PMC

Liu H, Du YM, Wang XH, Sun LP (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95:147–155. https://doi.org/10.1016/j.ijfoodmicro.2004.01.022 PubMed DOI

Liu XF, Guan YL, Yang DZ, Li Z, De Yao K (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J App Polym Sci 79:1324–1335. https://doi.org/10.1002/1097-4628(20010214)79:7%3c1324::AID-APP210%3e3.0.CO;2-L DOI

Livermore DM (2000) Antibiotic resistance in staphylococci. Int J Antimicrob Agents 16:S3–S10 DOI

Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39. https://doi.org/10.1016/s0966-842x(00)01913-2 PubMed DOI

Males BM, Rogers WA, Parisi JT (1975) Virulence factors of biotypes of Staphylocccus epidermidis from clinical sources. J Clin Microbiol 1:256–261 DOI

Mantripragada VP, Jayasuriya AC (2016) Effect of dual delivery of antibiotics (vancomycin and cefazolin) and BMP-7 from chitosan microparticles on Staphylococcus epidermidis and pre-osteoblasts in vitro. Mat Sci Eng C-Mater 67:409–417. https://doi.org/10.1016/j.msec.2016.05.033 DOI

Maťátková O, Kolouchová I, Kvasničková E, Ježdík R, Masák J, Čejková A (2017) Synergistic action of amphotericin B and rhamnolipid in combination on Candida parapsilosis and Trichosporon cutaneum. Chem Pap 71:1471–1480. https://doi.org/10.1007/s11696-017-0141-8 DOI

Mikstacka R, Rimando AM, Ignatowicz E (2010) Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant Food Hum Nutr 65:57–63. https://doi.org/10.1007/s11130-010-0154-8 DOI

Mishra B, Wang GS (2017) Individual and combined effects of engineered peptides and antibiotics on Pseudomonas aeruginosa biofilms. Pharmaceuticals 10:1–15. https://doi.org/10.3390/ph10030058 DOI

Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, Giannini S, Arciola CR (2011) Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol 6:1329–1349. https://doi.org/10.2217/fmb.11.117 PubMed DOI

Monzon M, Oteiza C, Leiva J, Amorena B (2001) Synergy of different antibiotic combinations in biofilms of Staphylococcus epidermidis. J Antimicrob Chemother 48:793–801. https://doi.org/10.1093/jac/48.6.793 PubMed DOI

Muslim SN, Al Kadmy IMS, Ali ANM, Salman BK, Ahmad M, Khazaal SS, Hussein NH, Muslim SN (2018) Chitosan extracted from Aspergillus flavus shows synergistic effect, eases quorum sensing mediated virulence factors and biofilm against nosocomial pathogen Pseudomonas aeruginosa. Int J Biol Macromol 107:52–58. https://doi.org/10.1016/j.ijbiomac.2017.08.146 PubMed DOI

Nesuta O, Hexnerova R, Budesinsky M, Slaninova J, Bednarova L, Hadravova R, Straka J, Veverka V, Cerovsky V (2016) Antimicrobial peptide from the wild bee Hylaeus signatus venom and its analogues: structure-activity study and synergistic effect with antibiotics. J Nat Products 79:1073–1083. https://doi.org/10.1021/acs.jnatprod.5b01129 DOI

Peng ZX, Ao HY, Wang L, Guo SR, Tang TT (2015) Quaternised chitosan coating on titanium provides a self-protective surface that prevents bacterial colonisation and implant-associated infections. Rsc Advances 5:54304–54311. https://doi.org/10.1039/c5ra07540h DOI

Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678. https://doi.org/10.1016/j.progpolymsci.2009.04.001 DOI

Piras AM, Maisetta G, Sandreschi S, Gazzarri M, Bartoli C, Grassi L, Esin S, Chiellini F, Batoni G (2015) Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front Microbiol 6:372–382. https://doi.org/10.3389/fmicb.2015.00372 PubMed DOI PMC

Raafat D, von Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. App Environ Microbiol 74:3764–3773. https://doi.org/10.1128/aem.00453-08 DOI

Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465. https://doi.org/10.1021/bm034130m DOI

Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001 DOI

Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L (2013) Cell Viability Assays. Nati C Biotechnol Inf. Eli Lilly & Company and the National Center for Advancing Translational Sciences .

Rubini D, Banu SF, Hari BNV, Devi DR, Gowrishankar S, Pandian SK, Nithyanand P (2018) Chitosan extracted from marine biowaste mitigates staphyloxanthin production and biofilms of Methicillin-resistant Staphylococcus aureus. Food Chem Toxicol 118:733–744. https://doi.org/10.1016/j.fct.2018.06.017 PubMed DOI

Semedo MC, Karmali A, Fonseca L (2015) A novel colorimetric assay of b-D-glucans in Basidiomycete strains by alcian blue dye in a 96-Well Microtiter Plate. Biotechnol Prog 31:1526–1535. https://doi.org/10.1002/btpr.2163 DOI

Shagdarova BT, Il’ina AV, Varlamov VP (2016) Antibacterial activity of alkylated and acylated derivatives of low-molecular weight chitosan. Appl Biochem Micro 52:222–225. https://doi.org/10.1134/s0003683816020149 DOI

Shi ZL, Neoh KG, Kang ET, Wang W (2006) Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 27:2440–2449. https://doi.org/10.1016/j.biomaterials.2005.11.036 PubMed DOI

Singh R, Ray D, Das A, Sharma M (2010) Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 65:1955–1958. https://doi.org/10.1093/jac/dkq257 PubMed DOI

Tam JP, Wang SJ, Wong KH, Tan WL (2015) Antimicrobial Peptides from Plants Pharmaceuticals 8:711–757. https://doi.org/10.3390/ph8040711 PubMed DOI

Tan HL, Ao HY, Ma R, Lin WT, Tang TT (2014) in vivo effect of quaternized chitosan-loaded polymethylmethacrylate bone cement on methicillin-resistant Staphylococcus epidermidis infection of the tibial metaphysis in a rabbit model. Antimicrob Agents Chemother 58:6016–6023. https://doi.org/10.1128/aac.03489-14 PubMed DOI PMC

Tan HL, Ma R, Lin CC, Liu ZW, Tang TT (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14:1854–1869. https://doi.org/10.3390/ijms14011854 PubMed DOI PMC

Tavaria FK, Costa EM, Gens EJ, Malcata FX, Pintado ME (2013) Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol 40:1014–1019. https://doi.org/10.1111/1346-8138.12315 PubMed DOI

Thomas VL, Sanford BA, Moreno R, Ramsay MA (1997) Enzyme-linked lectinsorbent assay measures N-acetyl-D-glucosamine in matrix of biofilm produced by Staphylococcus epidermidis. Curr Microbiol 35:249–254. https://doi.org/10.1007/s002849900248 PubMed DOI

Thornton DCO, Fejes EM, DiMarco SF, Clancy KM (2007) Measurement of acid polysaccharides in marine and freshwater samples using alcian blue. Limnol Oceanogr-Meth 5:73–87. https://doi.org/10.4319/lom.2007.5.73 DOI

Vaňková E, Kašparová P, Dulíčková N, Čeřovský V (2020a) Combined effect of lasioglossin LL-III derivative with azoles against Candida Albicans virulence factors: biofilm formation, phospholipases, proteases and hemolytic activity. Fems Yeast Res 20:1–16. https://doi.org/10.1093/femsyr/foaa020 DOI

Vaňková E, Paldrychová M, Kašparová P, Lokočová K, Kodeš Z, Maťátková O, Kolouchová I, Masák J (2020b) Natural antioxidant pterostilbene as an effective antibiofilm agent, particularly for gram-positive cocci. World J Microbiol Biotech 30:101–114. https://doi.org/10.1007/s11274-020-02876-5 DOI

Wang XH, Du YM, Fan LH, Liu H, Hu Y (2005) Chitosan-metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study. Polym Bull 55:105–113. https://doi.org/10.1007/s00289-005-0414-1 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...