Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24772422
PubMed Central
PMC3955621
DOI
10.1155/2014/408270
Knihovny.cz E-zdroje
- MeSH
- antioxidancia metabolismus MeSH
- biomasa MeSH
- Cyprinidae růst a vývoj metabolismus MeSH
- glutathionperoxidasa krev MeSH
- játra enzymologie metabolismus MeSH
- krmivo pro zvířata MeSH
- mikrořasy chemie MeSH
- potravní doplňky MeSH
- selen aplikace a dávkování MeSH
- seleničitan sodný aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- glutathionperoxidasa MeSH
- selen MeSH
- seleničitan sodný MeSH
Yearling common barbel (Barbus barbus L.) were fed four purified casein-based diets for 6 weeks in outdoor cages. Besides control diet, these were supplemented with 0.3 mg kg(-1) dw selenium (Se) from sodium selenite, or 0.3 and 1.0 mg kg(-1) from Se-enriched microalgae biomass (Chlorella), a previously untested Se source for fish. Fish mortality, growth, Se accumulation in muscle and liver, and activity of selected enzymes in blood plasma, muscle, liver, and intestine were evaluated. There was no mortality, and no differences in fish growth, among groups. Se concentrations in muscle and liver, activity of alanine aminotransferase and creatine kinase in blood plasma, glutathione reductase (GR) in muscle, and GR and catalase in muscle and liver suggested that selenium from Se-enriched Chlorella is more readily accumulated and biologically active while being less toxic than sodium selenite.
Zobrazit více v PubMed
Lall SP. The minerals. In: Halver JE, Hardy RW, editors. Fish Nutrition. San Diego, Calif, USA: Academic Press; 2002. pp. 259–308.
Sweetman JW, Torrecillas S, Dimitroglou A, Rider S, Davies SJ, Izquierdo MS. Enhancing the natural defences and barrier protection of aquaculture species. Aquaculture Research. 2010;41(3):345–355.
Hamre K, Mollan TA, Sæle Ø, Erstad B. Rotifers enriched with iodine and selenium increase survival in Atlantic cod (Gadus morhua) larvae. Aquaculture. 2008;284(1–4):190–195.
Ribeiro ARA, Ribeiro L, Dinis MT, Moren M. Protocol to enrich rotifers (Brachionus plicatilis) with iodine and selenium. Aquaculture Research. 2011;42(11):1737–1740.
Penglase S, Hamre K, Sweetman JW, Nordgreen A. A new method to increase and maintain the concentration of selenium in rotifers (Brachionus spp.) Aquaculture. 2011;315(1-2):144–153.
Küçükbay FZ, Yazlak H, Karaca I, et al. The effects of dietary organic or inorganic selenium in rainbow trout (Oncorhynchus mykiss) under crowding conditions. Aquaculture Nutrition. 2009;15(6):569–576.
Rider SA, Davies SJ, Jha AN, Fisher AA, Knight J, Sweetman JW. Supra-nutritional dietary intake of selenite and selenium yeast in normal and stressed rainbow trout (Oncorhynchus mykiss): implications on selenium status and health responses. Aquaculture. 2009;295(3-4):282–291.
Watanabe T, Kiron V, Satoh S. Trace minerals in fish nutrition. Aquaculture. 1997;151(1–4):185–207.
Raymond LJ, Ralston NVC. Selenium’s importance in regulatory issues regarding mercury. Fuel Processing Technology. 2009;90(11):1333–1338.
Mikulski D, Jankowski J, Zduńczyk Z, Wróblewska M, Sartowska K, Majewska T. The effect of selenium source on performance, carcass traits, oxidative status of the organism, and meat quality of turkeys. Journal of Animal and Feed Sciences. 2009;18(3):518–530.
Ripoll G, Joy M, Muñoz F. Use of dietary vitamin E and selenium (Se) to increase the shelf life of modified atmosphere packaged light lamb meat. Meat Science. 2011;87(1):88–93. PubMed
Rayman MP. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proceedings of the Nutrition Society. 2005;64(4):527–542. PubMed
Fritz H, Kennedy D, Fergusson D, et al. Selenium and lung cancer: a systematic review and meta analysis. PLoS One. 2011;6(11)e26259 PubMed PMC
Mistry HD, Pipkin FB, Redman CWG, Poston L. Selenium in reproductive health. American Journal of Obstetrics and Gynecology. 2012;206(1):21–30. PubMed
Turanov AA, Malinouski M, Gladyshev VN. Selenium and male reproduction. In: Hatfield DL, Berry MJ, Gladyshev VN, editors. Selenium. New York, NY, USA: Springer; 2012. pp. 409–417.
Rider SA, Davies SJ, Jha AN, Clough R, Sweetman JW. Bioavailability of co-supplemented organic and inorganic zinc and selenium sources in a white fishmeal-based rainbow trout (Oncorhynchus mykiss) diet. Journal of Animal Physiology and Animal Nutrition. 2010;94(1):99–110. PubMed
Bell JG, Cowey CB. Digestibility and bioavailability of dietary selenium from fishmeal, selenite, selenomethionine and selenocystine in Atlantic salmon (Salmo salar) Aquaculture. 1989;81(1):61–68.
Lorentzen M, Maage A, Julshamn K. Effects of dietary selenite or selenomethionine on tissue selenium levels of Atlantic salmon (Salmo salar) Aquaculture. 1994;121(4):359–367.
Wang C, Lovell RT. Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus) Aquaculture. 1997;152(1–4):223–234.
Cotter PA, Craig SR, Mclean E. Hyperaccumulation of selenium in hybrid striped bass: a functional food for aquaculture? Aquaculture Nutrition. 2008;14(3):215–222.
Jovanovic A, Grubor-Lajsic G, Djukic N, Gardinovacki G, Matic A, Spasic M. The effect of selenium on antioxidant system in erythrocytes and liver of the carp (Cyprinus carpio L.) Critical Reviews in Food Science and Nutrition. 1997;37(5):443–448. PubMed
Wang Y, Han J, Li W, Xu Z. Effect of different selenium source on growth performances, glutathione peroxidase activities, muscle composition and selenium concentration of allogynogenetic crucian carp (Carassius auratus gibelio) Animal Feed Science and Technology. 2007;134(3-4):243–251.
Zhou X, Wang Y, Gu Q, Li W. Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio) Aquaculture. 2009;291(1-2):78–81.
Schram E, Pedrero Z, Cámara C, Van Der Heul JW, Luten JB. Enrichment of African catfish with functional selenium originating from garlic. Aquaculture Research. 2008;39(8):850–860.
Schram E, Schelvis-Smit RAAM, van der Heul JW, Luten JB. Enrichment of the African catfish Clarias gariepinus (Burchell) with functional selenium originating from garlic: effect of enrichment period and depuration on total selenium level and sensory properties. Aquaculture Research. 2010;41(6):793–803.
Zmora O, Richmond A. Microalgae for aquaculture: microalgae production for aquaculture. In: Richmond A, editor. Handbook of Microalgal Cultures. Oxford, UK: Blackwell Science; 2004. pp. 365–379.
Kaushik SJ. Mineral nutrition. In: Guillaume J, Kaushik SJ, Bergot P, Mtailler R, editors. Nutrition and Feeding of Fish and Crustaceans. Chichester, UK: Praxis; 2001. pp. 169–181.
Elia AC, Prearo M, Pacini N, Dörr AJM, Abete MC. Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicology and Environmental Safety. 2011;74(2):166–173. PubMed
Pacini N, Abete MC, Dörr AJM, Prearo M, Natali M, Elia AC. Detoxifying response in juvenile tench fed by selenium diet. Environmental Toxicology and Pharmacology. 2012;33(1):46–52. PubMed
Lushchak VI, Bagnyukova TV, Husak VV, Luzhna LI, Lushchak OV, Storey KB. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. International Journal of Biochemistry and Cell Biology. 2005;37(8):1670–1680. PubMed
Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry. 1974;47(3):469–474. PubMed
Beers RF, Jr., Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry. 1952;195(1):133–140. PubMed
Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium deficient rat liver. Biochemical and Biophysical Research Communications. 1976;71(4):952–958. PubMed
Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry. 1975;250(14):5475–5480. PubMed
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry. 1976;72(1-2):248–254. PubMed
Zar JH. Biostatistical Analysis. 3rd edition. Upper Saddle River, NJ, USA: Prentice-Hall; 1996.
Rayman MP. The importance of selenium to human health. The Lancet. 2000;356(9225):233–241. PubMed
Hamilton SJ. Review of selenium toxicity in the aquatic food chain. Science of the Total Environment. 2004;326(1–3):1–31. PubMed
Koller LD, Exon JH. The two faces of selenium—deficiency and toxicity—are similar in animals and man. Canadian Journal of Veterinary Research. 1986;50(3):297–306. PubMed PMC
Felton SP, Landolt ML, Grace R, Palmisano A. Effects of selenium dietary enhancement on hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), when compared with wild coho: hepatic enzymes and seawater adaptation evaluated. Aquaculture Research. 1996;27(2):135–142.
Hilton JW, Hodson PV. Effect of increased dietary carbohydrate on selenium metabolism and toxicity in rainbow trout (Salmo gairdneri) Journal of Nutrition. 1983;113(6):1241–1248. PubMed
Hicks BD, Hilton JW, Ferguson HW. Influence of dietary selenium on the occurrence of nephrocalcinosis in the rainbow trout, Salmo gairdneri Richardson. Journal of Fish Diseases. 1984;7(5):379–389.
Lemly AD. Teratogenic effects of selenium in natural populations of freshwater fish. Ecotoxicology and Environmental Safety. 1993;26(2):181–204. PubMed
Lemly AD. Selenium Assessment in Aquatic Ecosystems: A Guide for Hazard Evaluation and Water Quality Criteria, New York, NY, USA: Springer; 2002.
Rayman MP. The use of high-selenium yeast to raise selenium status: how does it measure up? British Journal of Nutrition. 2004;92(4):557–573. PubMed
Schrauzer GN. Selenomethionine: a review of its nutritional significance, metabolism and toxicity. Journal of Nutrition. 2000;130(7):1653–1656. PubMed
De Alcantara S, Cerqueira Lopes C, Wagener K. Controlled introduction of selenium into Chlorella cells. Indian Journal of Experimental Biology. 1998;36(12):1286–1288. PubMed
Fan TW-M, Lane AN, Martens D, Higashi RM. Synthesis and structure characterization of selenium metabolites. Analyst. 1998;123(5):875–884.
Larsen EH, Hansen M, Fan T, Vahl M. Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae. Journal of Analytical Atomic Spectrometry. 2001;16(12):1403–1408.
Neumann PM, De Souza MP, Pickering IJ, Terry N. Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant, Cell and Environment. 2003;26(6):897–905. PubMed
Pincus MR. Interpreting laboratory results: reference values and decision making. In: Henry JB, editor. ClInical Diagnosis and Management by Laboratory Methods. Philadelphia, Pa, USA: W. B. Saunders; 1996. pp. 74–91.
Cnaani A, Tinman S, Avidar Y, Ron M, Hulata G. Comparative study of biochemical parameters in response to stress in Oreochromis aureus, O. mossambicus and two strains of O. niloticus . Aquaculture Research. 2004;35(15):1434–1440.
Stegeman JJ, Brouwer M, Di Giulio RT, et al. Molecular responses to environmental contamination: enzyme and protein systems as indicators of chemical exposure and effect. In: Huggett RJ, Kimerl RA, Mehrl PM, Bergman HL, editors. Biomarkers—Biochemical, Physiological, and Histological Markers of Anthropogenic Stress. Chelsea, Mich, USA: Lewis; 1992. pp. 235–335.
Barcellos LJG, Kreutz LC, De Souza C, et al. Hematological changes in jundiá (Rhamdia quelen Quoy and Gaimard Pimelodidae) after acute and chronic stress caused by usual aquacultural management, with emphasis on immunosuppressive effects. Aquaculture. 2004;237(1–4):229–236.
Abdel-Tawwab M, Mousa MAA, Abbass FE. Growth performance and physiological response of African catfish, Clarias gariepinus (B.) fed organic selenium prior to the exposure to environmental copper toxicity. Aquaculture. 2007;272(1–4):335–345.
Miller LL, Wang F, Palace VP, Hontela A. Effects of acute and subchronic exposures to waterborne selenite on the physiological stress response and oxidative stress indicators in juvenile rainbow trout. Aquatic Toxicology. 2007;83(4):263–271. PubMed
Pedrero Z, Madrid Y. Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Analytica Chimica Acta. 2009;634(2):135–152. PubMed
Atencio L, Moreno I, Jos Á, et al. Effects of dietary selenium on the oxidative stress and pathological changes in tilapia (Oreochromis niloticus) exposed to a microcystin-producing cyanobacterial water bloom. Toxicon. 2009;53(2):269–282. PubMed
Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 3rd edition. Oxford, UK: Oxford University Press; 1999.
Wang H-W, Xu H-M, Xiao G-H, et al. Effects of selenium on the antioxidant enzymes response of Neocaridina heteropoda exposed to ambient nitrite. Bulletin of Environmental Contamination and Toxicology. 2010;84(1):112–117. PubMed
Wang W-N, Wang A-L, Zhang Y-J. Effect of dietary higher level of selenium and nitrite concentration on the cellular defense response of Penaeus vannamei . Aquaculture. 2006;256(1–4):558–563.
Dörr AJM, Pacini N, Abete MC, Prearo M, Elia AC. Effects of a selenium-enriched diet on antioxidant response in adult crayfish (Procambarus clarkii) Chemosphere. 2008;73(7):1090–1095. PubMed
Schirmer RH, Krauth-Siegel RL, Schulz GE. Glutathione reductase. In: Dolphi D, Poulso R, Avaramovi O, editors. Coenzymes and Cofactors: Glutathione. New York, NY, USA: John Wiley & Sons; 1989. pp. 553–596.
Cazenave J, Bistoni MDLA, Pesce SF, Wunderlin DA. Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquatic Toxicology. 2006;76(1):1–12. PubMed
Zhang J, Shen H, Wang X, Wu J, Xue Y. Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus . Chemosphere. 2004;55(2):167–174. PubMed
Zhu Y, Chen Y, Liu Y, Yang H, Liang G, Tian L. Effect of dietary selenium level on growth performance, body composition and hepatic glutathione peroxidase activities of largemouth bass Micropterus salmoide . Aquaculture Research. 2011;43(11):1660–1668.
Elia AC, Dörr AJM, Prearo M, Taticchi MI, Abete MC. Detoxification enzymes of freshwater crayfish Procambarus clarkii fed a diet enriched in selenium: preliminary results. Marine and Freshwater Behaviour and Physiology. 2007;40(3):195–199.
National Research Council (NRC) Nutrient Requirements of Fish. Washington, DC, USA: National Academy Press; 1993.