The pnictogen bond: a quantitative molecular orbital picture
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
34155488
PubMed Central
PMC8297534
DOI
10.1039/d1cp01571k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We have analyzed the structure and stability of archetypal pnictogen-bonded model complexes D3PnA- (Pn = N, P, As, Sb; D, A = F, Cl, Br) using state-of-the-art relativistic density functional calculations at the ZORA-M06/QZ4P level. We have accomplished two tasks: (i) to compute accurate trends in pnictogen-bond strength based on a set of consistent data; and (ii) to rationalize these trends in terms of detailed analyses of the bonding mechanism based on quantitative Kohn-Sham molecular orbital (KS-MO) theory in combination with a canonical energy decomposition analysis (EDA) and Voronoi deformation density (VDD) analyses of the charge distribution. We have found that pnictogen bonds have a significant covalent character stemming from strong HOMO-LUMO interactions between the lone pair of A- and σ* of D3Pn. As such, the underlying mechanism of the pnictogen bond is similar to that of hydrogen, halogen, and chalcogen bonds.
Zobrazit více v PubMed
Girolami G. S. J. Chem. Educ. 2009;86:1200–1201. doi: 10.1021/ed086p1200. DOI
Scheiner S. Acc. Chem. Res. 2013;46:280–288. doi: 10.1021/ar3001316. PubMed DOI
Scheiner S. Int. J. Quantum Chem. 2013;113:1609–1620. doi: 10.1002/qua.24357. DOI
Del Bene J. E., Alkorta I. and Elguero J., in Noncovalent Forces. Challenges and Advances in Computational Chemistry and Physics, ed. S. Scheiner, Springer, Cham, 2015, vol. 19, pp. 191–263
Joshi P. R. Sankaran K. J. Mol. Struct. 2020;1217:128408. doi: 10.1016/j.molstruc.2020.128408. DOI
Mokrai R. Barret J. Apperley D. C. Batsanov A. S. Benkő Z. Heift D. Chem. – Eur. J. 2019;25:4017–4024. doi: 10.1002/chem.201900266. PubMed DOI PMC
Ashe III A. J. Adv. Organomet. Chem. 1990;30:77–97. doi: 10.1016/S0065-3055(08)60499-2. DOI
Carré F. Chuit C. Corriu R. J. P. Monforte P. Nayyar N. K. Reyé C. J. Organomet. Chem. 1995;499:147–154. doi: 10.1016/0022-328X(95)00318-K. DOI
Bauer S. Tschirschwitz S. Lönnecke P. Frank R. Kirchner B. Clarke M. L. Hey-Hawkins E. Eur. J. Inorg. Chem. 2009;12:2776–2788. doi: 10.1002/ejic.200900304. DOI
Zahn S. Frank R. Hey-Hawkins E. Kirchner B. Chem. – Eur. J. 2011;17:6034–6038. doi: 10.1002/chem.201002146. PubMed DOI
Del Bene J. E. Alkorta I. Sanchez-Sanz G. Elguero J. Chem. Phys. Lett. 2011;512:184–187. doi: 10.1016/j.cplett.2011.07.043. DOI
Taylor M. S. Coord. Chem. Rev. 2020;413:213270. doi: 10.1016/j.ccr.2020.213270. DOI
Mahmudov K. T. Gurbanov A. V. Aliyeva V. A. Resnati G. Pombeiro A. J. L. Coord. Chem. Rev. 2020;418:213381. doi: 10.1016/j.ccr.2020.213381. DOI
Lee L. M. Tsemperouli M. Poblador-Bahamonde A. I. Benz S. Sakai N. Sugihara K. Matile S. J. Am. Chem. Soc. 2019;141:810–814. doi: 10.1021/jacs.8b12554. PubMed DOI
Mahmudov K. T. Gurbanov A. V. Guseinov F. I. Fátima M. Guedes da Silva C. Coord. Chem. Rev. 2019;387:32–46. doi: 10.1016/j.ccr.2019.02.011. DOI
Park G. Gabbaï F. P. Chem. Sci. 2020;11:10107–10112. doi: 10.1039/D0SC04417B. PubMed DOI PMC
Scilabra P. Terraneo G. Daolio A. Baggioli A. Famulari A. Leroy C. Bryce D. L. Resnati G. Cryst. Growth Des. 2020;20:916–922. doi: 10.1021/acs.cgd.9b01306. DOI
Li Y. Meng L. Sun C. Zeng Y. J. Phys. Chem. A. 2020;124:3815–3824. doi: 10.1021/acs.jpca.0c01060. PubMed DOI
Benz S. Poblador-Bahamonde A. I. Low-Ders N. Matile S. Angew. Chem. 2018;130:5506–5510. doi: 10.1002/ange.201801452. PubMed DOI PMC
Gini A. Paraja M. Galmés B. Besnard C. Poblador-Bahamonde A. I. Sakai N. Frontera A. Matile S. Chem. Sci. 2020;11:7086–7091. doi: 10.1039/D0SC02551H. PubMed DOI PMC
Paraja M. Gini A. Sakai N. Matile S. Chem. – Eur. J. 2020;26:1–7. doi: 10.1002/chem.202003426. PubMed DOI
Politzer P. Murray J. S. Clark T. Phys. Chem. Chem. Phys. 2013;15:11178–11189. doi: 10.1039/C3CP00054K. PubMed DOI
Politzer P. Murray J. S. Concha M. C. J. Mol. Model. 2008;14:659–665. doi: 10.1007/s00894-008-0280-5. PubMed DOI
Politzer P. Murray J. S. Clark T. J. Phys. Chem. A. 2019;123:10123–10130. doi: 10.1021/acs.jpca.9b08750. PubMed DOI
Bauzá A. Mooibroek T. J. Frontera A. ChemPhysChem. 2015;16:2496–2517. doi: 10.1002/cphc.201500314. PubMed DOI
Shukla R. Chopra D. Phys. Chem. Chem. Phys. 2016;18:13820–13829. doi: 10.1039/C6CP01703G. PubMed DOI
Zierkiewicz W. Michalczyk M. Wysokiński R. Scheiner S. J. Mol. Model. 2019;25:152. doi: 10.1007/s00894-019-4031-6. PubMed DOI
Alkorta I. Elguero J. Del Bene J. E. J. Phys. Chem. A. 2013;117:10497–10503. doi: 10.1021/jp407097e. PubMed DOI
Del Bene J. E. Alkorta I. Elguero J. J. Phys. Chem. A. 2014;118:2360–2366. doi: 10.1021/jp500915c. PubMed DOI
Del Bene J. E. Alkorta I. Elguero J. J. Phys. Chem. A. 2014;118:3386–3392. doi: 10.1021/jp502667k. PubMed DOI
Wolters L. P. Bickelhaupt F. M. ChemistryOpen. 2012;1:96–105. doi: 10.1002/open.201100015. PubMed DOI PMC
de Azevedo Santos L. van der Lubbe S. C. C. Ramalho T. C. Hamlin T. A. Bickelhaupt F. M. ChemistryOpen. 2021;10:391–401. doi: 10.1002/open.202000323. PubMed DOI PMC
Larrañaga O. Arrieta A. Fonseca Guerra C. Bickelhaupt F. M. de Cózar A. Chem. – Asian J. 2021;16:315–321. doi: 10.1002/asia.202001201. PubMed DOI PMC
Bickelhaupt F. M. J. Comput. Chem. 1999;20:114–128. doi: 10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L. DOI
van Zeist W.-J. Bickelhaupt F. M. Org. Biomol. Chem. 2010;8:3118–3127. doi: 10.1039/B926828F. PubMed DOI
Vermeeren P. van der Lubbe S. C. C. Fonseca Guerra C. Bickelhaupt F. M. Hamlin T. A. Nat. Protoc. 2020;15:649–667. doi: 10.1038/s41596-019-0265-0. PubMed DOI
Bickelhaupt F. M. and Baerends E. J., in Reviews in Computational Chemistry, ed. K. B. Lipkowitz and D. B. Boyd, Wiley-VCH, New York, 2000, vol. 15, pp. 1–86
Bickelhaupt F. M. Nibbering N. M. M. van Wezenbeek E. M. Baerends E. J. J. Phys. Chem. 1992;96:4864–4873. doi: 10.1021/j100191a027. DOI
Krapp A. Bickelhaupt F. M. Frenking G. Chem. – Eur. J. 2006;12:9196–9216. doi: 10.1002/chem.200600564. PubMed DOI
Hamlin T. A., Vermeeren P., Fonseca Guerra C. and Bickelhaupt F. M., in Complementary Bonding Analyses, ed. S. Grabowski, De Gruyter, Berlin, 2021, pp. 199–212
te Velde G. Bickelhaupt F. M. Baerends E. J. Fonseca Guerra C. van Gisbergen S. J. A. Snijders J. G. Ziegler T. J. Comput. Chem. 2001;22:931–967. doi: 10.1002/jcc.1056. DOI
Fonseca Guerra C. Snijders J. G. te Velde G. Baerends E. J. Theor. Chem. Acc. 1998;99:391–403.
Zhao Y. Truhlar D. G. Theor. Chem. Acc. 2008;120:215–241.
Zhao Y. Truhlar D. G. J. Chem. Phys. 2006;125:194101. doi: 10.1063/1.2370993. PubMed DOI
van Lenthe E. Baerends E. J. J. Comput. Chem. 2003;24:1142–1156. doi: 10.1002/jcc.10255. PubMed DOI
van Lenthe E. Baerends E. J. Snijders J. G. J. Chem. Phys. 1994;101:9783–9792. doi: 10.1063/1.467943. DOI
Sun X. Soini T. M. Poater J. Hamlin T. A. Bickelhaupt F. M. J. Comput. Chem. 2019;40:2227–2233. doi: 10.1002/jcc.25871. PubMed DOI PMC
Bickelhaupt F. M. van Eikema Hommes N. J. R. Fonseca Guerra C. Baerends E. J. Organometallics. 1996;15:2923–2931. doi: 10.1021/om950966x. DOI
Fonseca Guerra C. Handgraaf J.-W. Baerends E. J. Bickelhaupt F. M. J. Comput. Chem. 2004;25:189–210. doi: 10.1002/jcc.10351. PubMed DOI
Swart M. Bickelhaupt F. M. J. Chem. Theory Comput. 2006;2:281–287. doi: 10.1021/ct0502460. PubMed DOI
van Zeist W. J. Ren Y. Bickelhaupt F. M. Sci. China: Chem. 2010;53:210–215. doi: 10.1007/s11426-009-0173-1. DOI
Zou J.-W. Jiang Y.-J. Guo M. Hu G.-X. Zhang B. Liu H.-C. Yu Q.-S. Chem. – Eur. J. 2005;11:740–751. doi: 10.1002/chem.200400504. PubMed DOI