The pnictogen bond: a quantitative molecular orbital picture

. 2021 Jun 30 ; 23 (25) : 13842-13852.

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34155488

We have analyzed the structure and stability of archetypal pnictogen-bonded model complexes D3PnA- (Pn = N, P, As, Sb; D, A = F, Cl, Br) using state-of-the-art relativistic density functional calculations at the ZORA-M06/QZ4P level. We have accomplished two tasks: (i) to compute accurate trends in pnictogen-bond strength based on a set of consistent data; and (ii) to rationalize these trends in terms of detailed analyses of the bonding mechanism based on quantitative Kohn-Sham molecular orbital (KS-MO) theory in combination with a canonical energy decomposition analysis (EDA) and Voronoi deformation density (VDD) analyses of the charge distribution. We have found that pnictogen bonds have a significant covalent character stemming from strong HOMO-LUMO interactions between the lone pair of A- and σ* of D3Pn. As such, the underlying mechanism of the pnictogen bond is similar to that of hydrogen, halogen, and chalcogen bonds.

Zobrazit více v PubMed

Girolami G. S. J. Chem. Educ. 2009;86:1200–1201. doi: 10.1021/ed086p1200. DOI

Scheiner S. Acc. Chem. Res. 2013;46:280–288. doi: 10.1021/ar3001316. PubMed DOI

Scheiner S. Int. J. Quantum Chem. 2013;113:1609–1620. doi: 10.1002/qua.24357. DOI

Del Bene J. E., Alkorta I. and Elguero J., in Noncovalent Forces. Challenges and Advances in Computational Chemistry and Physics, ed. S. Scheiner, Springer, Cham, 2015, vol. 19, pp. 191–263

Joshi P. R. Sankaran K. J. Mol. Struct. 2020;1217:128408. doi: 10.1016/j.molstruc.2020.128408. DOI

Mokrai R. Barret J. Apperley D. C. Batsanov A. S. Benkő Z. Heift D. Chem. – Eur. J. 2019;25:4017–4024. doi: 10.1002/chem.201900266. PubMed DOI PMC

Ashe III A. J. Adv. Organomet. Chem. 1990;30:77–97. doi: 10.1016/S0065-3055(08)60499-2. DOI

Carré F. Chuit C. Corriu R. J. P. Monforte P. Nayyar N. K. Reyé C. J. Organomet. Chem. 1995;499:147–154. doi: 10.1016/0022-328X(95)00318-K. DOI

Bauer S. Tschirschwitz S. Lönnecke P. Frank R. Kirchner B. Clarke M. L. Hey-Hawkins E. Eur. J. Inorg. Chem. 2009;12:2776–2788. doi: 10.1002/ejic.200900304. DOI

Zahn S. Frank R. Hey-Hawkins E. Kirchner B. Chem. – Eur. J. 2011;17:6034–6038. doi: 10.1002/chem.201002146. PubMed DOI

Del Bene J. E. Alkorta I. Sanchez-Sanz G. Elguero J. Chem. Phys. Lett. 2011;512:184–187. doi: 10.1016/j.cplett.2011.07.043. DOI

Taylor M. S. Coord. Chem. Rev. 2020;413:213270. doi: 10.1016/j.ccr.2020.213270. DOI

Mahmudov K. T. Gurbanov A. V. Aliyeva V. A. Resnati G. Pombeiro A. J. L. Coord. Chem. Rev. 2020;418:213381. doi: 10.1016/j.ccr.2020.213381. DOI

Lee L. M. Tsemperouli M. Poblador-Bahamonde A. I. Benz S. Sakai N. Sugihara K. Matile S. J. Am. Chem. Soc. 2019;141:810–814. doi: 10.1021/jacs.8b12554. PubMed DOI

Mahmudov K. T. Gurbanov A. V. Guseinov F. I. Fátima M. Guedes da Silva C. Coord. Chem. Rev. 2019;387:32–46. doi: 10.1016/j.ccr.2019.02.011. DOI

Park G. Gabbaï F. P. Chem. Sci. 2020;11:10107–10112. doi: 10.1039/D0SC04417B. PubMed DOI PMC

Scilabra P. Terraneo G. Daolio A. Baggioli A. Famulari A. Leroy C. Bryce D. L. Resnati G. Cryst. Growth Des. 2020;20:916–922. doi: 10.1021/acs.cgd.9b01306. DOI

Li Y. Meng L. Sun C. Zeng Y. J. Phys. Chem. A. 2020;124:3815–3824. doi: 10.1021/acs.jpca.0c01060. PubMed DOI

Benz S. Poblador-Bahamonde A. I. Low-Ders N. Matile S. Angew. Chem. 2018;130:5506–5510. doi: 10.1002/ange.201801452. PubMed DOI PMC

Gini A. Paraja M. Galmés B. Besnard C. Poblador-Bahamonde A. I. Sakai N. Frontera A. Matile S. Chem. Sci. 2020;11:7086–7091. doi: 10.1039/D0SC02551H. PubMed DOI PMC

Paraja M. Gini A. Sakai N. Matile S. Chem. – Eur. J. 2020;26:1–7. doi: 10.1002/chem.202003426. PubMed DOI

Politzer P. Murray J. S. Clark T. Phys. Chem. Chem. Phys. 2013;15:11178–11189. doi: 10.1039/C3CP00054K. PubMed DOI

Politzer P. Murray J. S. Concha M. C. J. Mol. Model. 2008;14:659–665. doi: 10.1007/s00894-008-0280-5. PubMed DOI

Politzer P. Murray J. S. Clark T. J. Phys. Chem. A. 2019;123:10123–10130. doi: 10.1021/acs.jpca.9b08750. PubMed DOI

Bauzá A. Mooibroek T. J. Frontera A. ChemPhysChem. 2015;16:2496–2517. doi: 10.1002/cphc.201500314. PubMed DOI

Shukla R. Chopra D. Phys. Chem. Chem. Phys. 2016;18:13820–13829. doi: 10.1039/C6CP01703G. PubMed DOI

Zierkiewicz W. Michalczyk M. Wysokiński R. Scheiner S. J. Mol. Model. 2019;25:152. doi: 10.1007/s00894-019-4031-6. PubMed DOI

Alkorta I. Elguero J. Del Bene J. E. J. Phys. Chem. A. 2013;117:10497–10503. doi: 10.1021/jp407097e. PubMed DOI

Del Bene J. E. Alkorta I. Elguero J. J. Phys. Chem. A. 2014;118:2360–2366. doi: 10.1021/jp500915c. PubMed DOI

Del Bene J. E. Alkorta I. Elguero J. J. Phys. Chem. A. 2014;118:3386–3392. doi: 10.1021/jp502667k. PubMed DOI

Wolters L. P. Bickelhaupt F. M. ChemistryOpen. 2012;1:96–105. doi: 10.1002/open.201100015. PubMed DOI PMC

de Azevedo Santos L. van der Lubbe S. C. C. Ramalho T. C. Hamlin T. A. Bickelhaupt F. M. ChemistryOpen. 2021;10:391–401. doi: 10.1002/open.202000323. PubMed DOI PMC

Larrañaga O. Arrieta A. Fonseca Guerra C. Bickelhaupt F. M. de Cózar A. Chem. – Asian J. 2021;16:315–321. doi: 10.1002/asia.202001201. PubMed DOI PMC

Bickelhaupt F. M. J. Comput. Chem. 1999;20:114–128. doi: 10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L. DOI

van Zeist W.-J. Bickelhaupt F. M. Org. Biomol. Chem. 2010;8:3118–3127. doi: 10.1039/B926828F. PubMed DOI

Vermeeren P. van der Lubbe S. C. C. Fonseca Guerra C. Bickelhaupt F. M. Hamlin T. A. Nat. Protoc. 2020;15:649–667. doi: 10.1038/s41596-019-0265-0. PubMed DOI

Bickelhaupt F. M. and Baerends E. J., in Reviews in Computational Chemistry, ed. K. B. Lipkowitz and D. B. Boyd, Wiley-VCH, New York, 2000, vol. 15, pp. 1–86

Bickelhaupt F. M. Nibbering N. M. M. van Wezenbeek E. M. Baerends E. J. J. Phys. Chem. 1992;96:4864–4873. doi: 10.1021/j100191a027. DOI

Krapp A. Bickelhaupt F. M. Frenking G. Chem. – Eur. J. 2006;12:9196–9216. doi: 10.1002/chem.200600564. PubMed DOI

Hamlin T. A., Vermeeren P., Fonseca Guerra C. and Bickelhaupt F. M., in Complementary Bonding Analyses, ed. S. Grabowski, De Gruyter, Berlin, 2021, pp. 199–212

te Velde G. Bickelhaupt F. M. Baerends E. J. Fonseca Guerra C. van Gisbergen S. J. A. Snijders J. G. Ziegler T. J. Comput. Chem. 2001;22:931–967. doi: 10.1002/jcc.1056. DOI

Fonseca Guerra C. Snijders J. G. te Velde G. Baerends E. J. Theor. Chem. Acc. 1998;99:391–403.

Zhao Y. Truhlar D. G. Theor. Chem. Acc. 2008;120:215–241.

Zhao Y. Truhlar D. G. J. Chem. Phys. 2006;125:194101. doi: 10.1063/1.2370993. PubMed DOI

van Lenthe E. Baerends E. J. J. Comput. Chem. 2003;24:1142–1156. doi: 10.1002/jcc.10255. PubMed DOI

van Lenthe E. Baerends E. J. Snijders J. G. J. Chem. Phys. 1994;101:9783–9792. doi: 10.1063/1.467943. DOI

Sun X. Soini T. M. Poater J. Hamlin T. A. Bickelhaupt F. M. J. Comput. Chem. 2019;40:2227–2233. doi: 10.1002/jcc.25871. PubMed DOI PMC

Bickelhaupt F. M. van Eikema Hommes N. J. R. Fonseca Guerra C. Baerends E. J. Organometallics. 1996;15:2923–2931. doi: 10.1021/om950966x. DOI

Fonseca Guerra C. Handgraaf J.-W. Baerends E. J. Bickelhaupt F. M. J. Comput. Chem. 2004;25:189–210. doi: 10.1002/jcc.10351. PubMed DOI

Swart M. Bickelhaupt F. M. J. Chem. Theory Comput. 2006;2:281–287. doi: 10.1021/ct0502460. PubMed DOI

van Zeist W. J. Ren Y. Bickelhaupt F. M. Sci. China: Chem. 2010;53:210–215. doi: 10.1007/s11426-009-0173-1. DOI

Zou J.-W. Jiang Y.-J. Guo M. Hu G.-X. Zhang B. Liu H.-C. Yu Q.-S. Chem. – Eur. J. 2005;11:740–751. doi: 10.1002/chem.200400504. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...