A Quantitative Molecular Orbital Perspective of the Chalcogen Bond

. 2021 Apr ; 10 (4) : 391-401. [epub] 20210217

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33594829

We have quantum chemically analyzed the structure and stability of archetypal chalcogen-bonded model complexes D2 Ch⋅⋅⋅A- (Ch = O, S, Se, Te; D, A = F, Cl, Br) using relativistic density functional theory at ZORA-M06/QZ4P. Our purpose is twofold: (i) to compute accurate trends in chalcogen-bond strength based on a set of consistent data; and (ii) to rationalize these trends in terms of detailed analyses of the bonding mechanism based on quantitative Kohn-Sham molecular orbital (KS-MO) theory in combination with a canonical energy decomposition analysis (EDA). At odds with the commonly accepted view of chalcogen bonding as a predominantly electrostatic phenomenon, we find that chalcogen bonds, just as hydrogen and halogen bonds, have a significant covalent character stemming from strong HOMO-LUMO interactions. Besides providing significantly to the bond strength, these orbital interactions are also manifested by the structural distortions they induce as well as the associated charge transfer from A- to D2 Ch.

Zobrazit více v PubMed

Vogel L., Wonner P., Huber S. M., Angew. Chem. 2019, 131, 1896–1907;

Angew. Chem. Int. Ed. 2019, 58, 1880–1891.

Rosenfield R. E., Parthasarathy R., Dunitz J. D., J. Am. Chem. Soc. 1977, 99, 4860–4862;

Guru Row T. N., Parthasarathy R., J. Am. Chem. Soc. 1981, 103, 477–479;

Ángyan J. G., Poirier R. A., Kucsman A., Csizmadia I. G., J. Am. Chem. Soc. 1987, 109, 2237–2245.

Politzer P., Murray J. S., Clark T., Phys. Chem. Chem. Phys. 2013, 15, 11178–11189; PubMed

Politzer P., Murray J. S., Concha M. C., J. Mol. Model. 2008, 14, 659–665; PubMed

Politzer P., Murray J. S., Clark T., J. Phys. Chem. A 2019, 123, 10123–10130; PubMed

Scheiner S., Michalczyk M., Zierkiewicz W., Coord. Chem. Rev. 2020, 405, 213136.

Oliveira V., Cremer D., Kraka E., J. Phys. Chem. A 2017, 121, 6845–6862; PubMed

Bortoli M., Ahmad S. M., Hamlin T. A., Bickelhaupt F. M., Orian L., Phys. Chem. Chem. Phys. 2018, 20, 27592–27599; PubMed

Pascoe D. J., Ling K. B., Cockroft S. L., J. Am. Chem. Soc. 2017, 139, 15160–15167. PubMed

Gleiter R., Haberhauer G., Werz D. B., Rominger F., Bleiholder C., Chem. Rev. 2018, 118, 2010–2041; PubMed

Riwar L.-J., Trapp N., Root K., Zenobi R., Diederich F., Angew. Chem. 2018, 130, 17506–17512; PubMed

Angew. Chem. Int. Ed. 2018, 57, 17259–17264; PubMed

Shukla R., Chopra D., Cryst. Growth Des. 2016, 16, 6734–6742;

Fanfrlík J., Přáda A., Padělková Z., Pecina A., Macháček J., Lepšík M., Holub J., Růžička A., Hnyk D., Hobza P., Angew. Chem. Int. Ed. 2014, 53, 10139–10142; PubMed

Angew. Chem. 2014, 126, 10303–10306;

Thomas S. P., Kumar V., Alhameedi K., Guru Row T. N., Chem. Eur. J. 2019, 25, 3591–3597; PubMed

Scilabra P., Murray J. S., Terraneo G., Resnati G., Cryst. Growth Des. 2019, 19, 1149–1154.

Rahman F.-U., Tzeli D., Petsalakis I. D., Theodorakopoulos G., Ballester P., Rebek J. Jr., Yu Y., J. Am. Chem. Soc. 2020, 142, 5876–5883. PubMed

Zeng R., Gong Z., Yan Q., J. Org. Chem. 2020, 85, 8397–8404; PubMed

Ho P. C., Wang J. Z., Meloni F., Vargas-Baca I., Coord. Chem. Rev. 2020, 422, 213464;

Mehrparvar S., Wölper C., Gleiter R., Haberhauer G., Angew. Chem. 2020, 132, 17303–17311; PubMed PMC

Angew. Chem. Int. Ed. 2020, 59, 17154–17161. PubMed PMC

Benz S., Macchione M., Verolet Q., Mareda J., Sakai N., Matile S., J. Am. Chem. Soc. 2016, 138, 9093–9096; PubMed

Macchione M., Tsemperouli M., Goujon A., Mallia A. R., Sakai N., Sugihara K., Matile S., Helv. Chim. Acta 2018, 101, e1800014;

Iwaoka M., Noncovalent Forces. Challenges, Advances in Computational Chemistry, Physics, Vol. 19 (Eds.: S. Scheiner), Springer, Cham, 2015, pp. 265–289;

Lee L. M., Tsemperouli M., Poblador-Bahamonde A. I., Benz S., Sakai N., Sugihara K., Matile S., J. Am. Chem. Soc. 2019, 141, 810–814; PubMed

Lutz P. B., Bayse C. A., J. Inorg. Biochem. 2016, 157, 94–103; PubMed

Iwaoka M., Babe N., Phosphorus, Sulfur, Silicon 2015, 190, 1257–1264;

Thomas S. P., Jayatilaka D., Guru Row T. N., Phys. Chem. Chem. Phys. 2015, 17, 25411–25420; PubMed

Lange A., Günther M., Büttner F. M., Zimmermann M. O., Heidrich J., Hennig S., Zahn S., Schall C., Sievers-Engler A., Ansideri F., Koch P., Lämmerhofer M., Stehle T., Laufer S. A., Boeckler F. M., J. Am. Chem. Soc. 2015, 137, 14640–14652; PubMed

Galmés B., Juan-Bals A., Frontera A., Resnati G., Chem. Eur. J. 2020, 26, 4599–4606. PubMed

Cheng Y., Qi Y., Tang Y., Zheng C., Wan Y., Huang W., Chen R., J. Phys. Chem. Lett. 2016, 7, 3609–3615; PubMed

Noh J., Jung S., Koo D. G., Kim G., Choi K. S., Park J. H., Shin T. J., Yang C., Park J., Sci. Rep. 2018, 8, 1–11; PubMed PMC

Strakova K., Assies L., Goujon A., Piazzolla F., Humeniuk H. V., Matile S., Chem. Rev. 2019, 119, 10977–11005; PubMed

Garrett G. E., Gibson G. L., Straus R. N., Seferos D. S., Taylor M. S., J. Am. Chem. Soc. 2015, 137, 4126–4133. PubMed

Bamberger J., Ostler F., Mancheño O. G., ChemCatChem 2019, 11, 5198–5211; PubMed PMC

Mahmudov K. T., Kopylovich M. N., Guedes Da Silva M. F. C., Pombeiro A. J. L., Dalton Trans. 2017, 46, 10121–10138; PubMed

Benz S., López-Andarias J., Mareda J., Sakai N., Matile S., Angew. Chem. 2017, 129, 830–833; PubMed

Angew. Chem. Int. Ed. 2017, 56, 812–815;

Wang W., Zhu H., Feng L., Yu Q., Hao J., Zhu R., Wang Y., J. Am. Chem. Soc. 2020, 142, 3117–3124; PubMed

Li Y., Meng L., Sun C., Zeng Y., J. Phys. Chem. A 2020, 124, 3815–3824. PubMed

Wolters L. P., Bickelhaupt F. M., ChemistryOpen 2012, 1, 96–105. PubMed PMC

Bickelhaupt F. M., J. Comput. Chem. 1999, 20, 114–128;

van Zeist W.-J., Bickelhaupt F. M., Org. Biomol. Chem. 2010, 8, 3118–3127; PubMed

Vermeeren P., Van der Lubbe S. C. C., Fonseca Guerra C., Bickelhaupt F. M., Hamlin T. A., Nat. Protoc. 2020, 15, 649–667. PubMed

Bickelhaupt F. M., Baerends E. J., Reviews in Computational Chemistry, Vol. 15 (Eds.: K. B. Lipkowitz, D. B. Boyd), Wiley-VCH, New York, 2000, pp. 1–86;

Bickelhaupt F. M., Nibbering N. M. M., van Wezenbeek E. M., Baerends E. J., J. Phys. Chem. 1992, 96, 4864–4873;

Krapp A., Bickelhaupt F. M., Frenking G., Chem. Eur. J. 2006, 12, 9196–9216. PubMed

Ziegler T., Rauk A., Inorg. Chem. 1979, 18, 1558–1565;

Ziegler T., Rauk A., Inorg. Chem. 1979, 18, 1755–1759;

Ziegler T., Rauk A., Theor. Chim. Acta 1977, 46, 1–10.

Te Velde G., Bickelhaupt F. M., Baerends E. J., Fonseca Guerra C., Van Gisbergen S. J. A., Snijders J. G., Ziegler T., J. Comput. Chem. 2001, 22, 931–967;

Fonseca Guerra C., Snijders J. G., Te Velde G., Baerends E. J., Theor. Chem. Acc. 1998, 99, 391–403;

ADF2017, SCM Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands, 2017; http://www.scm.com.

Zhao Y., Truhlar D. G., Theor. Chem. Acc. 2008, 120, 215–241;

Zhao Y., Truhlar D. G., J. Chem. Phys. 2006, 125, 194101. PubMed

van Lenthe E., Baerends E. J., J. Comput. Chem. 2003, 24, 1142–1156. PubMed

van Lenthe E., Baerends E. J., Snijders J. G., J. Chem. Phys. 1994, 101, 9783–9792.

L. de Azevedo Santos, T. C. Ramalho, T. A. Hamlin, F. M. Bickelhaupt, J. Comput. Chem. 2021, DOI: 10.1002/jcc.26489. PubMed PMC

Sun X., Soini T. M., Poater J., Hamlin T. A., Bickelhaupt F. M., J. Comput. Chem. 2019, 40, 2227–2233. PubMed PMC

Bickelhaupt F. M., van Eikema Hommes N. J. R., Fonseca Guerra C., Baerends E. J., Organometallics 1996, 15, 2923–2931;

Fonseca Guerra C., Handgraaf J.-W., Baerends E. J., Bickelhaupt F. M., J. Comput. Chem. 2004, 25, 189–210. PubMed

Swart M., Bickelhaupt F. M., J. Chem. Theory Comput. 2006, 2, 281–287; PubMed

van Zeist W. J., Ren Y., Bickelhaupt F. M., Sci. China Chem. 2010, 53, 210–215.

Bickelhaupt F. M., Hermann H. L., Boche G., Angew. Chem. 2006, 118, 838–841; PubMed

Angew. Chem. Int. Ed. 2006, 45, 823–826; PubMed

Bickelhaupt F. M., Solà M., Fonseca Guerra C., J. Chem. Theory Comput. 2006, 2, 965–980; PubMed

Bickelhaupt F. M., Solà M., Fonseca Guerra C., Faraday Discuss. 2007, 135, 451–468. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The pnictogen bond: a quantitative molecular orbital picture

. 2021 Jun 30 ; 23 (25) : 13842-13852.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...