A Quantitative Molecular Orbital Perspective of the Chalcogen Bond
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33594829
PubMed Central
PMC8015733
DOI
10.1002/open.202000323
Knihovny.cz E-zdroje
- Klíčová slova
- activation strain model, chalcogen bonding, density functional calculations, energy decomposition analysis, noncovalent interactions,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We have quantum chemically analyzed the structure and stability of archetypal chalcogen-bonded model complexes D2 Ch⋅⋅⋅A- (Ch = O, S, Se, Te; D, A = F, Cl, Br) using relativistic density functional theory at ZORA-M06/QZ4P. Our purpose is twofold: (i) to compute accurate trends in chalcogen-bond strength based on a set of consistent data; and (ii) to rationalize these trends in terms of detailed analyses of the bonding mechanism based on quantitative Kohn-Sham molecular orbital (KS-MO) theory in combination with a canonical energy decomposition analysis (EDA). At odds with the commonly accepted view of chalcogen bonding as a predominantly electrostatic phenomenon, we find that chalcogen bonds, just as hydrogen and halogen bonds, have a significant covalent character stemming from strong HOMO-LUMO interactions. Besides providing significantly to the bond strength, these orbital interactions are also manifested by the structural distortions they induce as well as the associated charge transfer from A- to D2 Ch.
Zobrazit více v PubMed
Vogel L., Wonner P., Huber S. M., Angew. Chem. 2019, 131, 1896–1907;
Angew. Chem. Int. Ed. 2019, 58, 1880–1891.
Rosenfield R. E., Parthasarathy R., Dunitz J. D., J. Am. Chem. Soc. 1977, 99, 4860–4862;
Guru Row T. N., Parthasarathy R., J. Am. Chem. Soc. 1981, 103, 477–479;
Ángyan J. G., Poirier R. A., Kucsman A., Csizmadia I. G., J. Am. Chem. Soc. 1987, 109, 2237–2245.
Politzer P., Murray J. S., Clark T., Phys. Chem. Chem. Phys. 2013, 15, 11178–11189; PubMed
Politzer P., Murray J. S., Concha M. C., J. Mol. Model. 2008, 14, 659–665; PubMed
Politzer P., Murray J. S., Clark T., J. Phys. Chem. A 2019, 123, 10123–10130; PubMed
Scheiner S., Michalczyk M., Zierkiewicz W., Coord. Chem. Rev. 2020, 405, 213136.
Oliveira V., Cremer D., Kraka E., J. Phys. Chem. A 2017, 121, 6845–6862; PubMed
Bortoli M., Ahmad S. M., Hamlin T. A., Bickelhaupt F. M., Orian L., Phys. Chem. Chem. Phys. 2018, 20, 27592–27599; PubMed
Pascoe D. J., Ling K. B., Cockroft S. L., J. Am. Chem. Soc. 2017, 139, 15160–15167. PubMed
Gleiter R., Haberhauer G., Werz D. B., Rominger F., Bleiholder C., Chem. Rev. 2018, 118, 2010–2041; PubMed
Riwar L.-J., Trapp N., Root K., Zenobi R., Diederich F., Angew. Chem. 2018, 130, 17506–17512; PubMed
Angew. Chem. Int. Ed. 2018, 57, 17259–17264; PubMed
Shukla R., Chopra D., Cryst. Growth Des. 2016, 16, 6734–6742;
Fanfrlík J., Přáda A., Padělková Z., Pecina A., Macháček J., Lepšík M., Holub J., Růžička A., Hnyk D., Hobza P., Angew. Chem. Int. Ed. 2014, 53, 10139–10142; PubMed
Angew. Chem. 2014, 126, 10303–10306;
Thomas S. P., Kumar V., Alhameedi K., Guru Row T. N., Chem. Eur. J. 2019, 25, 3591–3597; PubMed
Scilabra P., Murray J. S., Terraneo G., Resnati G., Cryst. Growth Des. 2019, 19, 1149–1154.
Rahman F.-U., Tzeli D., Petsalakis I. D., Theodorakopoulos G., Ballester P., Rebek J. Jr., Yu Y., J. Am. Chem. Soc. 2020, 142, 5876–5883. PubMed
Zeng R., Gong Z., Yan Q., J. Org. Chem. 2020, 85, 8397–8404; PubMed
Ho P. C., Wang J. Z., Meloni F., Vargas-Baca I., Coord. Chem. Rev. 2020, 422, 213464;
Mehrparvar S., Wölper C., Gleiter R., Haberhauer G., Angew. Chem. 2020, 132, 17303–17311; PubMed PMC
Angew. Chem. Int. Ed. 2020, 59, 17154–17161. PubMed PMC
Benz S., Macchione M., Verolet Q., Mareda J., Sakai N., Matile S., J. Am. Chem. Soc. 2016, 138, 9093–9096; PubMed
Macchione M., Tsemperouli M., Goujon A., Mallia A. R., Sakai N., Sugihara K., Matile S., Helv. Chim. Acta 2018, 101, e1800014;
Iwaoka M., Noncovalent Forces. Challenges, Advances in Computational Chemistry, Physics, Vol. 19 (Eds.: S. Scheiner), Springer, Cham, 2015, pp. 265–289;
Lee L. M., Tsemperouli M., Poblador-Bahamonde A. I., Benz S., Sakai N., Sugihara K., Matile S., J. Am. Chem. Soc. 2019, 141, 810–814; PubMed
Lutz P. B., Bayse C. A., J. Inorg. Biochem. 2016, 157, 94–103; PubMed
Iwaoka M., Babe N., Phosphorus, Sulfur, Silicon 2015, 190, 1257–1264;
Thomas S. P., Jayatilaka D., Guru Row T. N., Phys. Chem. Chem. Phys. 2015, 17, 25411–25420; PubMed
Lange A., Günther M., Büttner F. M., Zimmermann M. O., Heidrich J., Hennig S., Zahn S., Schall C., Sievers-Engler A., Ansideri F., Koch P., Lämmerhofer M., Stehle T., Laufer S. A., Boeckler F. M., J. Am. Chem. Soc. 2015, 137, 14640–14652; PubMed
Galmés B., Juan-Bals A., Frontera A., Resnati G., Chem. Eur. J. 2020, 26, 4599–4606. PubMed
Cheng Y., Qi Y., Tang Y., Zheng C., Wan Y., Huang W., Chen R., J. Phys. Chem. Lett. 2016, 7, 3609–3615; PubMed
Noh J., Jung S., Koo D. G., Kim G., Choi K. S., Park J. H., Shin T. J., Yang C., Park J., Sci. Rep. 2018, 8, 1–11; PubMed PMC
Strakova K., Assies L., Goujon A., Piazzolla F., Humeniuk H. V., Matile S., Chem. Rev. 2019, 119, 10977–11005; PubMed
Garrett G. E., Gibson G. L., Straus R. N., Seferos D. S., Taylor M. S., J. Am. Chem. Soc. 2015, 137, 4126–4133. PubMed
Bamberger J., Ostler F., Mancheño O. G., ChemCatChem 2019, 11, 5198–5211; PubMed PMC
Mahmudov K. T., Kopylovich M. N., Guedes Da Silva M. F. C., Pombeiro A. J. L., Dalton Trans. 2017, 46, 10121–10138; PubMed
Benz S., López-Andarias J., Mareda J., Sakai N., Matile S., Angew. Chem. 2017, 129, 830–833; PubMed
Angew. Chem. Int. Ed. 2017, 56, 812–815;
Wang W., Zhu H., Feng L., Yu Q., Hao J., Zhu R., Wang Y., J. Am. Chem. Soc. 2020, 142, 3117–3124; PubMed
Li Y., Meng L., Sun C., Zeng Y., J. Phys. Chem. A 2020, 124, 3815–3824. PubMed
Wolters L. P., Bickelhaupt F. M., ChemistryOpen 2012, 1, 96–105. PubMed PMC
Bickelhaupt F. M., J. Comput. Chem. 1999, 20, 114–128;
van Zeist W.-J., Bickelhaupt F. M., Org. Biomol. Chem. 2010, 8, 3118–3127; PubMed
Vermeeren P., Van der Lubbe S. C. C., Fonseca Guerra C., Bickelhaupt F. M., Hamlin T. A., Nat. Protoc. 2020, 15, 649–667. PubMed
Bickelhaupt F. M., Baerends E. J., Reviews in Computational Chemistry, Vol. 15 (Eds.: K. B. Lipkowitz, D. B. Boyd), Wiley-VCH, New York, 2000, pp. 1–86;
Bickelhaupt F. M., Nibbering N. M. M., van Wezenbeek E. M., Baerends E. J., J. Phys. Chem. 1992, 96, 4864–4873;
Krapp A., Bickelhaupt F. M., Frenking G., Chem. Eur. J. 2006, 12, 9196–9216. PubMed
Ziegler T., Rauk A., Inorg. Chem. 1979, 18, 1558–1565;
Ziegler T., Rauk A., Inorg. Chem. 1979, 18, 1755–1759;
Ziegler T., Rauk A., Theor. Chim. Acta 1977, 46, 1–10.
Te Velde G., Bickelhaupt F. M., Baerends E. J., Fonseca Guerra C., Van Gisbergen S. J. A., Snijders J. G., Ziegler T., J. Comput. Chem. 2001, 22, 931–967;
Fonseca Guerra C., Snijders J. G., Te Velde G., Baerends E. J., Theor. Chem. Acc. 1998, 99, 391–403;
ADF2017, SCM Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands, 2017; http://www.scm.com.
Zhao Y., Truhlar D. G., Theor. Chem. Acc. 2008, 120, 215–241;
Zhao Y., Truhlar D. G., J. Chem. Phys. 2006, 125, 194101. PubMed
van Lenthe E., Baerends E. J., J. Comput. Chem. 2003, 24, 1142–1156. PubMed
van Lenthe E., Baerends E. J., Snijders J. G., J. Chem. Phys. 1994, 101, 9783–9792.
L. de Azevedo Santos, T. C. Ramalho, T. A. Hamlin, F. M. Bickelhaupt, J. Comput. Chem. 2021, DOI: 10.1002/jcc.26489. PubMed PMC
Sun X., Soini T. M., Poater J., Hamlin T. A., Bickelhaupt F. M., J. Comput. Chem. 2019, 40, 2227–2233. PubMed PMC
Bickelhaupt F. M., van Eikema Hommes N. J. R., Fonseca Guerra C., Baerends E. J., Organometallics 1996, 15, 2923–2931;
Fonseca Guerra C., Handgraaf J.-W., Baerends E. J., Bickelhaupt F. M., J. Comput. Chem. 2004, 25, 189–210. PubMed
Swart M., Bickelhaupt F. M., J. Chem. Theory Comput. 2006, 2, 281–287; PubMed
van Zeist W. J., Ren Y., Bickelhaupt F. M., Sci. China Chem. 2010, 53, 210–215.
Bickelhaupt F. M., Hermann H. L., Boche G., Angew. Chem. 2006, 118, 838–841; PubMed
Angew. Chem. Int. Ed. 2006, 45, 823–826; PubMed
Bickelhaupt F. M., Solà M., Fonseca Guerra C., J. Chem. Theory Comput. 2006, 2, 965–980; PubMed
Bickelhaupt F. M., Solà M., Fonseca Guerra C., Faraday Discuss. 2007, 135, 451–468. PubMed
The pnictogen bond: a quantitative molecular orbital picture