Intramolecular Pnictogen Bonds as Key Determinants for NMR Quantum Computation Parameters

. 2025 Sep 30 ; 10 (38) : 44201-44209. [epub] 20250916

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41048787

In this work, four molecules, two naphthalene derivatives and two acenaphthene derivatives, were studied via DFT for their ability to act as a quantum bit (qubit) for transferring information for NMR quantum computational information (QIP). NMR calculations indicate that all four molecules are suitable as qubits. Additionally, AIM, NBO, and EDA analyses provided insights into the presence and nature of intramolecular interactions between key atoms relevant to NMR-QIP. The results suggest that these PP or PSe interactions correspond to pnictogen bonds (PnB) in three compounds and to the chalcogen bond in the other compound, with most of their interaction energy originating from orbital interactions. To investigate the role of PnB in NMR parameters, the PP interaction was modified to either increase or decrease its interaction energy. AIM and EDA analyses, combined with NMR calculations, reveal that as the interaction strengthens the NMR parameters become more suitable for NMR-QIP. Additionally, the results confirm that orbital interactions remain the primary contributor to the interaction energy. In summary, the findings of this study highlight the relationship between intramolecular pnictogen interactions and NMR parameters in four compounds, with potential applications in quantum information processing.

Zobrazit více v PubMed

Lino J. B. R., Rocha E. P., Ramalho T. C.. Value of NMR Parameters and DFT Calculations for Quantum Information Processing Utilizing Phosphorus Heterocycles. J. Phys. Chem. A. 2017;121(23):4486–4495. doi: 10.1021/acs.jpca.6b12728. PubMed DOI

Lino; Ramalho, J. B. R. ; Informação Quântica e Parâmetros de Ressonância Magnética Nuclear Quantum Information and Nuclear Magnetic Resonance Parameters; 2018; Vol. 10. http://rvq.sbq.org.br.

Lino J. B. D. R., Ramalho T. C.. Exploring Through-Space Spin-Spin Couplings for Quantum Information Processing: Facing the Challenge of Coherence Time and Control Quantum States. J. Phys. Chem. A. 2019;123(7):1372–1379. doi: 10.1021/acs.jpca.8b09425. PubMed DOI

Lino J. B. D. R., Sauer S. P. A., Ramalho T. C.. Enhancing NMR Quantum Computation by Exploring Heavy Metal Complexes as Multiqubit Systems: A Theoretical Investigation. J. Phys. Chem. A. 2020;124(24):4946–4955. doi: 10.1021/acs.jpca.0c01607. PubMed DOI

Lino J. B. d. R., Gonçalves M. A., Sauer S. P. A., Ramalho T. C.. Extending NMR Quantum Computation Systems by Employing Compounds with Several Heavy Metals as Qubits. Magnetochemistry. 2022;8(5):47. doi: 10.3390/magnetochemistry8050047. DOI

Jones, J. A. NMR Quantum Computation. www.elsevier.nl/locate/pnmrs.

Jones, J. A. Quantum Computing with NMR. Prog. Nucl. Magn. Reson. Spectrosc.. Elsevier B.V. 2011; pp 91–120. 10.1016/j.pnmrs.2010.11.001. PubMed DOI

Jones J. A.. Controlling NMR Spin Systems for Quantum Computation. Prog. Nucl. Magn. Reson. Spectrosc. 2024;140-141:49–85. doi: 10.1016/j.pnmrs.2024.02.002. PubMed DOI

Ramanathan C., Boulant N., Chen Z., Cory D. G., Chuang I., Steffen M.. NMR Quantum Information Processing. Quantum Inf. Process. 2004;3:15. doi: 10.1002/chin.200503278. DOI

Criger B., Passante G., Park D., Laflamme R.. Recent Advances in Nuclear Magnetic Resonance Quantum Information Processing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2012;370:4620–4635. doi: 10.1098/rsta.2011.0352. PubMed DOI

Ryan C. A., Laforest M., Boileau J. C., Laflamme R.. Experimental Implementation of a Discrete-Time Quantum Random Walk on an NMR Quantum-Information Processor. Phys. Rev. A. 2005;72(6):062317. doi: 10.1103/PhysRevA.72.062317. DOI

DiVincenzo, D. P. The Physical Implementation of Quantum Computation. Fortschritte der Physik. Wiley-VCH Verlag; 2000; pp 771–783. 10.1002/1521-3978(200009)48:9/11. DOI

V. Viesser R., Ducati L. C., Tormena C. F., Autschbach J.. The Halogen Effect on the 13C NMR Chemical Shift in Substituted Benzenes. Phys. Chem. Chem. Phys. 2018;20(16):11247–11259. doi: 10.1039/C8CP01249K. PubMed DOI

Scheiner S., Michalczyk M., Zierkiewicz W.. Correlation between Noncovalent Bond Strength and Spectroscopic Perturbations within the Lewis Base. J. Phys. Chem. A. 2024;128:10875. doi: 10.1021/acs.jpca.4c07382. PubMed DOI

Jimmink B., Sethio D., Turunen L., Von Der Heiden D., Erdélyi M.. Probing Halogen Bonds by Scalar Couplings. J. Am. Chem. Soc. 2021;143(28):10695–10699. doi: 10.1021/jacs.1c04477. PubMed DOI PMC

de Azevedo Santos L., Ramalho T. C., Hamlin T. A., Bickelhaupt F. M.. Intermolecular Covalent Interactions: Nature and Directionality. Chem. - Eur. J. 2023;29(14):e202203791. doi: 10.1002/chem.202203791. PubMed DOI

de Azevedo Santos L., Hamlin T. A., Ramalho T. C., Bickelhaupt F. M.. The Pnictogen Bond: A Quantitative Molecular Orbital Picture. Phys. Chem. Chem. Phys. 2021;23(25):13842–13852. doi: 10.1039/D1CP01571K. PubMed DOI PMC

de Azevedo Santos L., van der Lubbe S. C. C., Hamlin T. A., Ramalho T. C., Matthias Bickelhaupt F.. A Quantitative Molecular Orbital Perspective of the Chalcogen Bond. ChemistryOpen. 2021;10(4):391–401. doi: 10.1002/open.202000323. PubMed DOI PMC

Alkorta I., Elguero J., Frontera A.. Not Only Hydrogen Bonds: Other Noncovalent Interactions. Crystals. 2020;10:180. doi: 10.3390/cryst10030180. DOI

Andolpho G. A., Ramalho T. C.. Pnictogen Bond-Driven Control of the Molecular Interaction between Organophosphorus and Acetylcholinesterase Enzyme. J. Comput. Chem. 2024;45(15):1303–1315. doi: 10.1002/jcc.27328. PubMed DOI

Zahn S., Frank R., Hey-Hawkins E., Kirchner B.. Pnicogen Bonds: A New Molecular Linker? Chem. - Eur. J. 2011;17(22):6034–6038. doi: 10.1002/chem.201002146. PubMed DOI

Hazra S., Majumdar D., Frontera A., Roy S., Gassoumi B., Ghalla H., Dalai S.. On the Significant Importance of Hg···Cl Spodium Bonding/σ/π-Hole/Noncovalent Interactions and Nanoelectronic/Conductivity Applications in Mercury Complexes: Insights from DFT Spectrum. Cryst. Growth Des. 2024;24(17):7246–7261. doi: 10.1021/acs.cgd.4c00893. DOI

Majumdar D., Frontera A., Roy S., Sutradhar D.. Experimental and Theoretical Survey of Intramolecular Spodium Bonds/σ/π-Holes and Noncovalent Interactions in Trinuclear Zn­(II)-Salen Type Complex with OCN- Ions: A Holistic View in Crystal Engineering. ACS Omega. 2024;9(1):1786–1797. doi: 10.1021/acsomega.3c08422. PubMed DOI PMC

Politzer P., Murray J. S., Clark T., Resnati G.. The σ-Hole Revisited. Phys. Chem. Chem. Phys. 2017;19:32166–32178. doi: 10.1039/C7CP06793C. PubMed DOI

Hupf E., Lork E., Mebs S., Chęcińska L., Beckmann J.. Probing Donor-Acceptor Interactions in Peri -Substituted Diphenylphosphinoacenaphthyl-Element Dichlorides of Group 13 and 15 Elements. Organometallics. 2014;33(24):7247–7259. doi: 10.1021/om501036c. DOI

Tripathi M. K., Ramanathan V.. Nature and Strength of Sulfur-Centered Hydrogen Bond in Methanethiol Aqueous Solutions. J. Phys. Chem. A. 2023;127(10):2265–2273. doi: 10.1021/acs.jpca.2c08314. PubMed DOI

Braga L. S., Leal D. H. S., Kuca K., Ramalho T. C.. Perspectives on the Role of the Frontier Effective-for-Reaction Molecular Orbital (FERMO) in the Study of Chemical Reactivity: An Updated Review. Curr. Org. Chem. 2020;24(3):314–331. doi: 10.2174/1385272824666200204121044. DOI

Karaçar A., Freytag M., Thönnessen H., Omelanczuk J., Jones P. G., Bartsch R., Schmutzler R.. Monoxidised Sulfur and Selenium Derivatives of 1,8-Bis­(Diphenylphosphino)­Naphthalene: Synthesis and Coordination Chemistry. Z. Anorg. Allg. Chem. 2000;626(11):2361–2372. doi: 10.1002/1521-3749(200011)626:11<2361::AID-ZAAC2361>3.0.CO;2-R. DOI

Knight F. R., Fuller A. L., Bühl M., Slawin A. M. Z., Woollins J. D.. Sterically Crowded Peri-Substituted Naphthalene Phosphines and Their P v Derivatives. Chem. - Eur. J. 2010;16(25):7617–7634. doi: 10.1002/chem.201000454. PubMed DOI

Zhang L., Christie F. A., Tarcza A. E., Lancaster H. G., Taylor L. J., Bühl M., Malkina O. L., Woollins J. D., Carpenter-Warren C. L., Cordes D. B., Slawin A. M. Z., Chalmers B. A., Kilian P.. Phosphine and Selenoether Peri-Substituted Acenaphthenes and Their Transition-Metal Complexes: Structural and NMR Investigations. Inorg. Chem. 2023;62(39):16084–16100. doi: 10.1021/acs.inorgchem.3c02255. PubMed DOI PMC

Chalmers B. A., Athukorala Arachchige K. S., Prentis J. K. D., Knight F. R., Kilian P., Slawin A. M. Z., Woollins J. D.. Sterically Encumbered Tin and Phosphorus Peri-Substituted Acenaphthenes. Inorg. Chem. 2014;53(16):8795–8808. doi: 10.1021/ic5014768. PubMed DOI

Ramalho T. C., De Alencastro R. B., La-Scalea M. A., Figueroa-Villar J. D.. Theoretical Evaluation of Adiabatic and Vertical Electron Affinity of Some Radiosensitizers in Solution Using FEP, Ab Initio and DFT Methods. Biophys Chem. 2004;110(3):267–279. doi: 10.1016/j.bpc.2004.03.002. PubMed DOI

Adamo C., Barone V.. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0Model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI

Weigend F., Ahlrichs R.. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI

Pascual-Borràs M., López X., Poblet J. M.. Accurate Calculation of 31P NMR Chemical Shifts in Polyoxometalates. Phys. Chem. Chem. Phys. 2015;17:8723–8731. doi: 10.1039/C4CP05016A. PubMed DOI

Lu T., Chen F.. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI

Becke A. D.. Density-Functional Thermochemistry III. The Role of Exact Exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Glendening E. D., Landis C. R., Weinhold F.. NBO 6.0: Natural Bond Orbital Analysis Program. J. Comput. Chem. 2013;34:1429–1437. doi: 10.1002/jcc.23266. PubMed DOI

te Velde G., Bickelhaupt F. M., Baerends E. J., Fonseca Guerra C., van Gisbergen S. J. A., Snijders J. G., Ziegler T.. Chemistry with ADF. J. Comput. Chem. 2001;22:931–967. doi: 10.1002/jcc.1056. DOI

Neese F.. Software Update: The ORCA Program SystemVersion 5.0. Wiley Interdiscip. Rev.:Comput. Mol. Sci. 2022 doi: 10.1002/wcms.1606. DOI

Nielsen M. L., Pustinger J. V., Strobel J.. Phosphorus-31 Nuclear Magnetic Resonance Chemical Shifts of Phosphorus Compounds. Journal of Chemical & Engineering Data. 1964;9(2):167–170. doi: 10.1021/je60021a003. DOI

Zheng A., Liu S. B., Deng F.. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chem. Rev. 2017;117(19):12475–12531. doi: 10.1021/acs.chemrev.7b00289. PubMed DOI

Duddeck H.. Selenium-77 Nuclear Magnetic Resonance Spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 1995;27:1–323. doi: 10.1016/0079-6565(94)00005-F. DOI

Rusakov Y. Y., Rusakova I. L., Krivdin L. B.. MP2 Calculation of 77Se NMR Chemical Shifts Taking into Account Relativistic Corrections. Magn. Reson. Chem. 2015;53:485–492. doi: 10.1002/mrc.4226. PubMed DOI

Bould J., Londesborough M. G. S., Tok O. L.. Experimental and Computational 77Se NMR Spectroscopic Study on Selenaborane Cluster Compounds. Inorg. Chem. 2024;63:16186–16193. doi: 10.1021/acs.inorgchem.4c01890. PubMed DOI PMC

Duddeck H.. 77Se NMR Spectroscopy and Its Applications in Chemistry. Annu. Rep. NMR Spectrosc. 2004;52:105–166. doi: 10.1016/S0066-4103(04)52003-3. DOI

Rusakova I. L., Rusakov Y. Y.. Correlated Ab Initio Calculations of One-Bond 31P–77Se and 31P–125Te Spin-Spin Coupling Constants in a Series of P-Se and P-Te Systems Accounting for Relativistic Effects (Part 2) Magn. Reson. Chem. 2020;58:929–940. doi: 10.1002/mrc.5058. PubMed DOI

Sanz Camacho P., McKay D., Dawson D. M., Kirst C., Yates J. R., Green T. F. G., Cordes D. B., Slawin A. M. Z., Woollins J. D., Ashbrook S. E.. Investigating Unusual Homonuclear Intermolecular “through-Space” J Couplings in Organochalcogen Systems. Inorg. Chem. 2016;55(21):10881–10887. doi: 10.1021/acs.inorgchem.6b01121. PubMed DOI

Wolters L. P., Bickelhaupt F. M.. Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective. ChemistryOpen. 2012;1:96–105. doi: 10.1002/open.201100015. PubMed DOI PMC

Michalczyk M., Zierkiewicz W., Scheiner S.. Ability of the Spectroscopic Properties of the PSe Bond of a Base to Assess Noncovalent Bond Strength. J. Phys. Chem. A. 2025;129:545. doi: 10.1021/acs.jpca.4c08283. PubMed DOI

Furan S., Vogt M., Winkels K., Lork E., Mebs S., Hupf E., Beckmann J.. (6-Diphenylphosphinoacenaphth-5-Yl)­Indium and -Nickel Compounds: Synthesis, Structure, Transmetalation, and Cross-Coupling Reactions. Organometallics. 2021;40(9):1284–1295. doi: 10.1021/acs.organomet.1c00078. DOI

Ramszv N. F.. Magnetic Shielding of Nuclei in Molecules. Phys. Rev. 1950:78. doi: 10.1103/PhysRev.78.699. DOI

Krivdin L. B.. Recent Advances in Computational 31P NMR: Part 1. Chemical Shifts. Magn. Reson. Chem. 2020;58:478–499. doi: 10.1002/mrc.4965. PubMed DOI

Alkorta I., Popelier P. L. A.. Linking the Interatomic Exchange-Correlation Energy to Experimental J-Coupling Constants. J. Phys. Chem. A. 2023;127(2):468–476. doi: 10.1021/acs.jpca.2c07693. PubMed DOI PMC

Dračínský M., Buchta M., Buděšínský M., Vacek-Chocholoušová J., Stará I. G., Starý I., Malkina O. L.. Dihydrogen Contacts Observed by Through-Space Indirect NMR Coupling. Chem. Sci. 2018;9(38):7437–7446. doi: 10.1039/C8SC02859A. PubMed DOI PMC

Espinosa E., Molins E., Lecomte C.. Hydrogen Bond Strengths Revealed by Topological Analyses of Experimentally Observed Electron Densities. Chem. Phys. Lett. 1998;285:170.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...