Experimental and Computational 77Se NMR Spectroscopic Study on Selenaborane Cluster Compounds

. 2024 Sep 02 ; 63 (35) : 16186-16193. [epub] 20240819

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39160773

Calculated and measured 77Se nuclear magnetic resonance (NMR) chemical shift data on a diverse collection of 13 selenaborane cluster compounds, containing a total of 19 selenium centers, reveals a correlation between chemical shifts and the intracluster coordination of selenium atoms within their borane frameworks. A plot of the measured against calculated 77Se NMR chemical shifts shows an approximately linear relationship that can serve as a predictive tool in assessing the chemical shift range in which a selenium vertex from a particular compound might be expected to be found, thereby reducing expensive experimental time. Furthermore, the relative chemical shifts between selenium vertices in clusters containing more than one selenium atom are consistent across the range, thus allowing the assignment of the selenium resonances with a high degree of confidence even in relatively low-level density functional theory calculations. A new macropolyhedral 20-vertex selenaborane Se2B18H20 (A) is also reported.

Zobrazit více v PubMed

Jain V. K.. In Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; Jain V. K., Priyadarsini K. I., Eds.; The Royal Society of Chemistry, 2017; pp 1–33. 10.1039/9781788011907-00001. DOI

Struppe J.; Zhang Y.; Rozovsky S. 77Se Chemical Shift Tensor of L-Selenocystine: Experimental NMR Measurements and Quantum Chemical Investigations of Structural Effects. J. Phys. Chem. B 2015, 119 (9), 3643–3650. 10.1021/jp510857s. PubMed DOI PMC

Silva M. S.; Alves D.; Hartwig D.; Jacob R. G.; Perin G.; Lenardão E. J. Selenium-NMR Spectroscopy in Organic Synthesis: From Structural Characterization Toward New Investigations. Asian J. Org. Chem. 2021, 10 (1), 91–128. 10.1002/ajoc.202000582. DOI

Suzuki N.; Ogra Y.. In Metallomics: Recent Analytical Techniques and Applications; Ogra Y., Hirata T., Eds.; Springer: Japan, Tokyo, 2017; pp 147–155. 10.1007/978-4-431-56463-8_7. DOI

Benton A.; Durand D. J.; Copeland Z.; Watson J. D.; Fey N.; Mansell S. M.; Rosair G. M.; Welch A. J. On the Basicity of Carboranylphosphines. Inorg. Chem. 2019, 58 (21), 14818–14829. 10.1021/acs.inorgchem.9b02486. PubMed DOI

Nandi C.; Kar K.; Roy A.; Ghosh S.. Metallaboranes and metallaheteroboranes: An overview of single-cage and condensed polyhedral clusters. In Adv. Inorg. Chem.; Chatterjee D., van Eldik R., Eds.; Academic Press, 2023; Vol. 81, pp 41–93. 10.1016/bs.adioch.2022.09.001. DOI

Kennedy J. D. In Big Borane Assemblies, Macropolyhedral Species and Related Chemistry, Boron: The Fifth Element; Hnyk D., McKee M., Eds.; Springer: Heidelberg, New York, Dordrecht and London, 2015; Chapter 6, Vol. 20, pp 139–180, 10.1007/978-3-319-22282-0_6. DOI

Todd L. J.; Siedle A. R. NMR studies of boranes, carboranes and hetero-atom boranes. Prog. Nucl. Magn. Reson. Spectrosc. 1979, 13 (2), 87–176. 10.1016/0079-6565(79)80001-1. DOI

Wesemann L. DOI

Grimes R. N.Carboranes, 3rd ed.; Elsevier: Oxford, UK, 2016.

Haridas A.; Bedajna S.; Ghosh S. Substitution at B-H vertices of group 5 metallaborane clusters. J. Organomet. Chem. 2022, 961, 122250. 10.1016/j.jorganchem.2021.122250. DOI

Nandi C.; Roy A.; Kar K.; Cordier M.; Ghosh S. Cluster Growth Reactions: Structures and Bonding of Metal-Rich Metallaheteroboranes Containing Heavier Chalcogen Elements. Inorg. Chem. 2022, 61 (42), 16750–16759. 10.1021/acs.inorgchem.2c02601. PubMed DOI

Pathak K.; Nandi C.; Ghosh S. Metallaheteroboranes with group 16 elements: Aspects of synthesis, framework and reactivity. Coord. Chem. Rev. 2022, 453, 214303. 10.1016/j.ccr.2021.214303. DOI

Chakrahari K. K.; Thakur A.; Mondal B.; Ramkumar V.; Ghosh S. Hypoelectronic Dimetallaheteroboranes of Group 6 Transition Metals Containing Heavier Chalcogen Elements. Inorg. Chem. 2013, 52 (14), 7923–7932. 10.1021/ic400432v. PubMed DOI

Geetharani K.; Bose S. K.; Sahoo S.; Ghosh S. A Family of Heterometallic Cubane-Type Clusters with an PubMed DOI

Sahoo S.; Mobin S. M.; Ghosh S. Direct insertion of sulfur, selenium and tellurium atoms into metallaborane cages using chalcogen powders. J. Organomet. Chem. 2010, 695 (7), 945–949. 10.1016/j.jorganchem.2009.11.025. DOI

Friesen G. D.; Barriola A.; Daluga P.; Ragatz P.; Huffman J. C.; Todd L. J. Chemistry of dithia-selenathia-and diselenaboranes. Inorg. Chem. 1980, 19 (2), 458–462. 10.1021/ic50204a035. DOI

Bairagi S.; Chatterjee D.; De A.; Cordier M.; Roisnel T.; Ghosh S. Syntheses, structures, and bonding of boron containing niobium and ruthenium clusters stabilized by chalcogens. J. Organomet. Chem. 2024, 1012, 123126. 10.1016/j.jorganchem.2024.123126. DOI

Beckett M. A.; Brellochs B.; Chizhevsky I. T.; Damhus T.; Hellwich K.-H.; Kennedy J. D.; Laitinen R.; Powell W. H.; Rabinovich D.; Viñas C.; Yerin A. Nomenclature for boranes and related species (IUPAC Recommendations 2019). Pure Appl. Chem. 2020, 92 (2), 355–381. 10.1515/pac-2018-0205. DOI

Bould J.; Tok O.; Clegg W.; Londesborough M. G. S.; Litecká M.; Ehn M. The metal-mediated coupling of the diselenaundecaborate anion [Se DOI

Bould J.; Londesborough M. G. S.; Litecká M.; Macías R.; Shea S. L.; McGrath T. D.; Clegg W.; Kennedy J. D. Macropolyhedral Chalcogenaboranes: Insertion of Selenium into the Isomers of B PubMed DOI

Bould J.; Ehn M.; Tok O.; Bavol D.; Kučeráková M.; Clegg W.; Litecká M.; Lang K.; Kirakci K.; Londesborough M. G. S. Expanding Luminescence Horizons in Macropolyhedral Heteroboranes. Angew. Chem., Int. Ed. Engl. 2024, 63, e202401872 10.1002/anie.202401872. PubMed DOI

Hnyk D.; Bühl M.; Holub J.; Hayes S. A.; Wann D. A.; Mackie I. D.; Borisenko K. B.; Robertson H. E.; Rankin D. W. H. Molecular Structures of PubMed DOI

Binder H.; Söylemez S.; Stöckle R.; Pfitzner A.; Hofmann M.; Schleyer P. v. R. Thia- und Selena- DOI

Reed D.; Ferguson G.; Ruhl B. L.; Dhubhghaill O. N.; Spalding T. R. The formation of the [7-SeB DOI

Ferguson G.; Parvez M.; MacCurtain J. A.; Dhubhghaill O. N.; Spalding T. R.; Reed D. Reactions of heteroboranes. Synthesis of [2,2-(PPh DOI

Friesen G. D.; Kump R. L.; Todd L. J. Preparation and chemistry of the B DOI

Friesen G. D.; Todd L. J. Insertion of selenium, tellurium, or arsenic atoms into borane cage compounds using element oxide reagents. J. Chem. Soc., Chem. Commun. 1978, (8), 349–350. 10.1039/c39780000349. DOI

Friesen G. D.; Barriola A.; Todd L. J.. ChemInform Abstract: Syntheses of new selanaboranes using sodium polyselenide. Chem. Informationsdienst 1978, 9( (49), ). 10.1002/chin.197849031. DOI

Little J. L.; Friesen G. D.; Todd L. J. Preparation and properties of selenaboranes and telluraboranes. Inorg. Chem. 1977, 16 (4), 869–872. 10.1021/ic50170a030. DOI

Keller W.; Hofmann M.; Wadepohl H.; Enders M.; Fanfrlík J.; Hnyk D. Chlorinated polyhedral selenaboranes revisited by joint experimental/computational efforts: the formation of PubMed DOI

Rao C. E.; Yuvaraj K.; Ghosh S. Diruthenium analogues of Hexaborane(12) and Pentaborane(9): Synthesis and structural characterization of [(1,2-Cp*Ru) DOI

Gao P.; Wang X.; Huang Z.; Yu H. PubMed DOI PMC

Bühl M.; Thiel W.; Fleischer U.; Kutzelnigg W. Ab Initio Computation of DOI

Bayse C. A. Considerations for Reliable Calculation of 77Se Chemical Shifts. J. Chem. Theory Comput. 2005, 1 (6), 1119–1127. 10.1021/ct050136t. PubMed DOI

Rusakov Y. Y.; Rusakova I. L.; Krivdin L. B. MP2 calculation of PubMed DOI

Duddeck H. Selenium-77 nuclear magnetic resonance spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 1995, 27 (1–3), 1–323. 10.1016/0079-6565(94)00005-F. DOI

Duddeck H.Annual Reports on NMR Spectroscopy; Academic Press, 2004; Vol. 52, pp 105–166. 10.1016/S0066-4103(04)52003-3. DOI

Jelínek T.; Cisařová I.; Štíbr B.; Kennedy J. D.; Thornton-Pett M. Macropolyhedral boron-containing cluster chemistry. The [S DOI

Ormsby D. L.; Greatrex R.; Kennedy J. D. Macropolyhedral boron-containing cluster chemistry. The reversible disassembly and reassembly of the hexagonal pyramidal {B PubMed DOI

Londesborough M. G. S.; Macías R.; Kennedy J. D.; Clegg W.; Bould J. Macropolyhedral Nickelaboranes from the Metal-Assisted Fusion of KB PubMed DOI

Hnyk D.; Wann D. A.; Holub J.; Bühl M.; Robertson H. E.; Rankin D. W. H. The gas-phase structure of 1-Selena- PubMed DOI

Kaur P.; Holub J.; Rath N. P.; Bould J.; Barton L.; Štíbr B.; Kennedy J. D. Macropolyhedral boron-containing cluster chemistry. Nineteen-vertex [S DOI

Hofmann M.; Goll S. K. Macropolyhedral thiaboranes with unusual DOI

Bicerano J.; Marynick D. S.; Lipscomb W. N. Molecular orbital studies on large closo boron hydrides. Inorg. Chem. 1978, 17 (12), 3443–3453. 10.1021/ic50190a028. DOI

Roy D. K.; Bose S. K.; Anju R. S.; Mondal B.; Ramkumar V.; Ghosh S. Boron Beyond the Icosahedral Barrier: A 16-Vertex Metallaborane. Angew. Chem., Int. Ed. Engl. 2013, 52 (11), 3222–3226. 10.1002/anie.201208849. PubMed DOI

Heřmánek S. Boron-11 NMR spectra of boranes, main-group heteroboranes, and substituted derivatives. Factors influencing chemical shifts of skeletal atoms. Chem. Rev. 1992, 92 (2), 325–362. 10.1021/cr00010a007. DOI

Oldfield J. E. The Two Faces of Selenium. J. Nutr. 1987, 117 (12), 2002–2008. 10.1093/jn/117.12.2002. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K. J. A.; Montgomery J.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16. Revision C.01: Wallingford CT, 2016. .

Pritchard B. P.; Altarawy D.; Didier B.; Gibson T. D.; Windus T. L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59 (11), 4814–4820. 10.1021/acs.jcim.9b00725. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Intramolecular Pnictogen Bonds as Key Determinants for NMR Quantum Computation Parameters

. 2025 Sep 30 ; 10 (38) : 44201-44209. [epub] 20250916

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...