Experimental and Computational 77Se NMR Spectroscopic Study on Selenaborane Cluster Compounds
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39160773
PubMed Central
PMC11372749
DOI
10.1021/acs.inorgchem.4c01890
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Calculated and measured 77Se nuclear magnetic resonance (NMR) chemical shift data on a diverse collection of 13 selenaborane cluster compounds, containing a total of 19 selenium centers, reveals a correlation between chemical shifts and the intracluster coordination of selenium atoms within their borane frameworks. A plot of the measured against calculated 77Se NMR chemical shifts shows an approximately linear relationship that can serve as a predictive tool in assessing the chemical shift range in which a selenium vertex from a particular compound might be expected to be found, thereby reducing expensive experimental time. Furthermore, the relative chemical shifts between selenium vertices in clusters containing more than one selenium atom are consistent across the range, thus allowing the assignment of the selenium resonances with a high degree of confidence even in relatively low-level density functional theory calculations. A new macropolyhedral 20-vertex selenaborane Se2B18H20 (A) is also reported.
See more in PubMed
Jain V. K.. In Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; Jain V. K., Priyadarsini K. I., Eds.; The Royal Society of Chemistry, 2017; pp 1–33.10.1039/9781788011907-00001. DOI
Struppe J.; Zhang Y.; Rozovsky S. 77Se Chemical Shift Tensor of L-Selenocystine: Experimental NMR Measurements and Quantum Chemical Investigations of Structural Effects. J. Phys. Chem. B 2015, 119 (9), 3643–3650. 10.1021/jp510857s. PubMed DOI PMC
Silva M. S.; Alves D.; Hartwig D.; Jacob R. G.; Perin G.; Lenardão E. J. Selenium-NMR Spectroscopy in Organic Synthesis: From Structural Characterization Toward New Investigations. Asian J. Org. Chem. 2021, 10 (1), 91–128. 10.1002/ajoc.202000582. DOI
Suzuki N.; Ogra Y.. In Metallomics: Recent Analytical Techniques and Applications; Ogra Y., Hirata T., Eds.; Springer: Japan, Tokyo, 2017; pp 147–155.10.1007/978-4-431-56463-8_7. DOI
Benton A.; Durand D. J.; Copeland Z.; Watson J. D.; Fey N.; Mansell S. M.; Rosair G. M.; Welch A. J. On the Basicity of Carboranylphosphines. Inorg. Chem. 2019, 58 (21), 14818–14829. 10.1021/acs.inorgchem.9b02486. PubMed DOI
Nandi C.; Kar K.; Roy A.; Ghosh S.. Metallaboranes and metallaheteroboranes: An overview of single-cage and condensed polyhedral clusters. In Adv. Inorg. Chem.; Chatterjee D., van Eldik R., Eds.; Academic Press, 2023; Vol. 81, pp 41–93.10.1016/bs.adioch.2022.09.001. DOI
Kennedy J. D. In Big Borane Assemblies, Macropolyhedral Species and Related Chemistry, Boron: The Fifth Element; Hnyk D., McKee M., Eds.; Springer: Heidelberg, New York, Dordrecht and London, 2015; Chapter 6, Vol. 20, pp 139–180, 10.1007/978-3-319-22282-0_6. DOI
Todd L. J.; Siedle A. R. NMR studies of boranes, carboranes and hetero-atom boranes. Prog. Nucl. Magn. Reson. Spectrosc. 1979, 13 (2), 87–176. 10.1016/0079-6565(79)80001-1. DOI
Wesemann L. s- and p-Block Heteroboranes and Carboranes. Compr. Organomet. Chem. III 2007, 3, 113–131. 10.1016/B0-08-045047-4/00044-3. DOI
Grimes R. N.Carboranes, 3rd ed.; Elsevier: Oxford, UK, 2016.
Haridas A.; Bedajna S.; Ghosh S. Substitution at B-H vertices of group 5 metallaborane clusters. J. Organomet. Chem. 2022, 961, 122250.10.1016/j.jorganchem.2021.122250. DOI
Nandi C.; Roy A.; Kar K.; Cordier M.; Ghosh S. Cluster Growth Reactions: Structures and Bonding of Metal-Rich Metallaheteroboranes Containing Heavier Chalcogen Elements. Inorg. Chem. 2022, 61 (42), 16750–16759. 10.1021/acs.inorgchem.2c02601. PubMed DOI
Pathak K.; Nandi C.; Ghosh S. Metallaheteroboranes with group 16 elements: Aspects of synthesis, framework and reactivity. Coord. Chem. Rev. 2022, 453, 214303.10.1016/j.ccr.2021.214303. DOI
Chakrahari K. K.; Thakur A.; Mondal B.; Ramkumar V.; Ghosh S. Hypoelectronic Dimetallaheteroboranes of Group 6 Transition Metals Containing Heavier Chalcogen Elements. Inorg. Chem. 2013, 52 (14), 7923–7932. 10.1021/ic400432v. PubMed DOI
Geetharani K.; Bose S. K.; Sahoo S.; Ghosh S. A Family of Heterometallic Cubane-Type Clusters with an exo-Fe(CO)3 Fragment Anchored to the Cubane. Angew. Chem., Int. Ed. Engl. 2011, 50 (17), 3908–3911. 10.1002/anie.201008101. PubMed DOI
Sahoo S.; Mobin S. M.; Ghosh S. Direct insertion of sulfur, selenium and tellurium atoms into metallaborane cages using chalcogen powders. J. Organomet. Chem. 2010, 695 (7), 945–949. 10.1016/j.jorganchem.2009.11.025. DOI
Friesen G. D.; Barriola A.; Daluga P.; Ragatz P.; Huffman J. C.; Todd L. J. Chemistry of dithia-selenathia-and diselenaboranes. Inorg. Chem. 1980, 19 (2), 458–462. 10.1021/ic50204a035. DOI
Bairagi S.; Chatterjee D.; De A.; Cordier M.; Roisnel T.; Ghosh S. Syntheses, structures, and bonding of boron containing niobium and ruthenium clusters stabilized by chalcogens. J. Organomet. Chem. 2024, 1012, 123126.10.1016/j.jorganchem.2024.123126. DOI
Beckett M. A.; Brellochs B.; Chizhevsky I. T.; Damhus T.; Hellwich K.-H.; Kennedy J. D.; Laitinen R.; Powell W. H.; Rabinovich D.; Viñas C.; Yerin A. Nomenclature for boranes and related species (IUPAC Recommendations 2019). Pure Appl. Chem. 2020, 92 (2), 355–381. 10.1515/pac-2018-0205. DOI
Bould J.; Tok O.; Clegg W.; Londesborough M. G. S.; Litecká M.; Ehn M. The metal-mediated coupling of the diselenaundecaborate anion [Se2B9H10]−. Inorg. Chim. Acta 2023, 547, 121341.10.1016/j.ica.2022.121341. DOI
Bould J.; Londesborough M. G. S.; Litecká M.; Macías R.; Shea S. L.; McGrath T. D.; Clegg W.; Kennedy J. D. Macropolyhedral Chalcogenaboranes: Insertion of Selenium into the Isomers of B18H22. Inorg. Chem. 2022, 61 (4), 1899–1917. 10.1021/acs.inorgchem.1c03018. PubMed DOI
Bould J.; Ehn M.; Tok O.; Bavol D.; Kučeráková M.; Clegg W.; Litecká M.; Lang K.; Kirakci K.; Londesborough M. G. S. Expanding Luminescence Horizons in Macropolyhedral Heteroboranes. Angew. Chem., Int. Ed. Engl. 2024, 63, e20240187210.1002/anie.202401872. PubMed DOI
Hnyk D.; Bühl M.; Holub J.; Hayes S. A.; Wann D. A.; Mackie I. D.; Borisenko K. B.; Robertson H. E.; Rankin D. W. H. Molecular Structures of arachno-Decaborane Derivatives 6,9-X2B8H10 (X = CH2, NH, Se) Including a Gas-Phase Electron-Diffraction Study of 6,9-C2B8H14. Inorg. Chem. 2006, 45 (15), 6014–6019. 10.1021/ic060296v. PubMed DOI
Binder H.; Söylemez S.; Stöckle R.; Pfitzner A.; Hofmann M.; Schleyer P. v. R. Thia- und Selena-arachno-undecaboran 6,7-μ-(CH3E)B10H13 Kristallstruktur von arachno-6,7-μ-(CH3Se)B10H13 Theoretische Untersuchungen der Molekülstrukturen und 11B-NMR-Verschiebungen von arachno-6,7-μ-(CH3E)B10H13. Z. Anorg. Allg. Chem. 1997, 623 (7), 1157–1162. 10.1002/zaac.19976230725. DOI
Reed D.; Ferguson G.; Ruhl B. L.; Dhubhghaill O. N.; Spalding T. R. The formation of the [7-SeB10H11]− anion from 1-SeB11H11 and the structure of the anion studied by boron-11 COSY NMR and x-ray crystallography. Polyhedron 1988, 7 (1), 17–23. 10.1016/S0277-5387(00)81176-6. DOI
Ferguson G.; Parvez M.; MacCurtain J. A.; Dhubhghaill O. N.; Spalding T. R.; Reed D. Reactions of heteroboranes. Synthesis of [2,2-(PPh3)2-1,2-SePtB10H10].CH2Cl2, its crystal and molecular structure and that of SeB11H11. J. Chem. Soc., Dalton Trans. 1987, (4), 699–704. 10.1039/DT9870000699. DOI
Friesen G. D.; Kump R. L.; Todd L. J. Preparation and chemistry of the B9H12Se– and B9H12Te– ions. Inorg. Chem. 1980, 19 (6), 1485–1488. 10.1021/ic50208a012. DOI
Friesen G. D.; Todd L. J. Insertion of selenium, tellurium, or arsenic atoms into borane cage compounds using element oxide reagents. J. Chem. Soc., Chem. Commun. 1978, (8), 349–350. 10.1039/c39780000349. DOI
Friesen G. D.; Barriola A.; Todd L. J.. ChemInform Abstract: Syntheses of new selanaboranes using sodium polyselenide. Chem. Informationsdienst 1978, 9( (49), ).10.1002/chin.197849031. DOI
Little J. L.; Friesen G. D.; Todd L. J. Preparation and properties of selenaboranes and telluraboranes. Inorg. Chem. 1977, 16 (4), 869–872. 10.1021/ic50170a030. DOI
Keller W.; Hofmann M.; Wadepohl H.; Enders M.; Fanfrlík J.; Hnyk D. Chlorinated polyhedral selenaboranes revisited by joint experimental/computational efforts: the formation of closo-1-SeB9Cl9 and the crystal structure of closo-SeB11Cl11. Dalton Trans. 2023, 52, 16886–16893. 10.1039/D3DT02987E. PubMed DOI
Rao C. E.; Yuvaraj K.; Ghosh S. Diruthenium analogues of Hexaborane(12) and Pentaborane(9): Synthesis and structural characterization of [(1,2-Cp*Ru)2B2H6S2] and [(2,3-Cp*Ru)2B3H6(μ-η1-EPh)], (E = S, Se and Te) (Cp* = η5-C5Me5). J. Organomet. Chem. 2015, 776, 123–128. 10.1016/j.jorganchem.2014.10.049. DOI
Gao P.; Wang X.; Huang Z.; Yu H. 11B NMR Chemical Shift Predictions via Density Functional Theory and Gauge-Including Atomic Orbital Approach: Applications to Structural Elucidations of Boron-Containing Molecules. ACS Omega 2019, 4 (7), 12385–12392. 10.1021/acsomega.9b01566. PubMed DOI PMC
Bühl M.; Thiel W.; Fleischer U.; Kutzelnigg W. Ab Initio Computation of 77Se NMR Chemical Shifts with the IGLO-SCF, the GIAO-SCF, and the GIAO-MP2Methods. J. Phys. Chem. 1995, 99, 4000–4007. 10.1021/j100012a021. DOI
Bayse C. A. Considerations for Reliable Calculation of 77Se Chemical Shifts. J. Chem. Theory Comput. 2005, 1 (6), 1119–1127. 10.1021/ct050136t. PubMed DOI
Rusakov Y. Y.; Rusakova I. L.; Krivdin L. B. MP2 calculation of 77Se NMR chemical shifts taking into account relativistic corrections. Magn. Reson. Chem. 2015, 53 (7), 485–492. 10.1002/mrc.4226. PubMed DOI
Duddeck H. Selenium-77 nuclear magnetic resonance spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 1995, 27 (1–3), 1–323. 10.1016/0079-6565(94)00005-F. DOI
Duddeck H.Annual Reports on NMR Spectroscopy; Academic Press, 2004; Vol. 52, pp 105–166.10.1016/S0066-4103(04)52003-3. DOI
Jelínek T.; Cisařová I.; Štíbr B.; Kennedy J. D.; Thornton-Pett M. Macropolyhedral boron-containing cluster chemistry. The [S2B18H19]− anion, and the reversible dismantling and regeneration of an apical boron cluster site with cluster connectivity six. J. Chem. Soc., Dalton Trans. 1998, (18), 2965–2968. 10.1039/a805791e. DOI
Ormsby D. L.; Greatrex R.; Kennedy J. D. Macropolyhedral boron-containing cluster chemistry. The reversible disassembly and reassembly of the hexagonal pyramidal {B7} feature in the [S2B18H19]− anion. Dalton Trans. 2008, 12, 1625–1634. 10.1039/b715915c. PubMed DOI
Londesborough M. G. S.; Macías R.; Kennedy J. D.; Clegg W.; Bould J. Macropolyhedral Nickelaboranes from the Metal-Assisted Fusion of KB9H14. Inorg. Chem. 2019, 58 (19), 13258–13267. 10.1021/acs.inorgchem.9b02116. PubMed DOI
Hnyk D.; Wann D. A.; Holub J.; Bühl M.; Robertson H. E.; Rankin D. W. H. The gas-phase structure of 1-Selena-closo-dodecaborane(11), 1-SeB11H11, determined by the concerted use of electron diffraction and computational methods. Dalton Trans. 2008, (1), 96–100. 10.1039/B714457A. PubMed DOI
Kaur P.; Holub J.; Rath N. P.; Bould J.; Barton L.; Štíbr B.; Kennedy J. D. Macropolyhedral boron-containing cluster chemistry. Nineteen-vertex [S2B17H17(SMe2)]. An unusual apical boron atom of cluster connectivity six that introduces a new polyhedral borane building block. Chem. Commun. 1996, (2), 273–275. 10.1039/CC9960000273. DOI
Hofmann M.; Goll S. K. Macropolyhedral thiaboranes with unusual arachno subclusters—a computational investigation. J. Organomet. Chem. 2002, 657 (1–2), 273–278. 10.1016/S0022-328X(01)01491-7. DOI
Bicerano J.; Marynick D. S.; Lipscomb W. N. Molecular orbital studies on large closo boron hydrides. Inorg. Chem. 1978, 17 (12), 3443–3453. 10.1021/ic50190a028. DOI
Roy D. K.; Bose S. K.; Anju R. S.; Mondal B.; Ramkumar V.; Ghosh S. Boron Beyond the Icosahedral Barrier: A 16-Vertex Metallaborane. Angew. Chem., Int. Ed. Engl. 2013, 52 (11), 3222–3226. 10.1002/anie.201208849. PubMed DOI
Heřmánek S. Boron-11 NMR spectra of boranes, main-group heteroboranes, and substituted derivatives. Factors influencing chemical shifts of skeletal atoms. Chem. Rev. 1992, 92 (2), 325–362. 10.1021/cr00010a007. DOI
Oldfield J. E. The Two Faces of Selenium. J. Nutr. 1987, 117 (12), 2002–2008. 10.1093/jn/117.12.2002. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K. J. A.; Montgomery J.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16. Revision C.01: Wallingford CT, 2016. .
Pritchard B. P.; Altarawy D.; Didier B.; Gibson T. D.; Windus T. L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59 (11), 4814–4820. 10.1021/acs.jcim.9b00725. PubMed DOI