Intermolecular Covalent Interactions: Nature and Directionality
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
FAPEMIG
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
CAPES
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
NWO
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
PubMed
36478415
DOI
10.1002/chem.202203791
Knihovny.cz E-zdroje
- Klíčová slova
- bond theory, chalcogen bonds, density functional calculations, halogen bonds, pnictogen bonds,
- Publikační typ
- časopisecké články MeSH
Quantum chemical methods were employed to analyze the nature and the origin of the directionality of pnictogen (PnB), chalcogen (ChB), and halogen bonds (XB) in archetypal Fm Z⋅⋅⋅F- complexes (Z=Pn, Ch, X), using relativistic density functional theory (DFT) at ZORA-M06/QZ4P. Quantitative Kohn-Sham MO and energy decomposition analyses (EDA) show that all these intermolecular interactions have in common that covalence, that is, HOMO-LUMO interactions, provide a crucial contribution to the bond energy, besides electrostatic attraction. Strikingly, all these bonds are directional (i.e., F-Z⋅⋅⋅F- is approximately linear) despite, and not because of, the electrostatic interactions which, in fact, favor bending. This constitutes a breakdown of the σ-hole model. It was shown how the σ-hole model fails by neglecting both, the essential physics behind the electrostatic interaction and that behind the directionality of electron-rich intermolecular interactions. Our findings are general and extend to the neutral, weaker ClI⋅⋅⋅NH3 , HClTe⋅⋅⋅NH3 , and H2 ClSb⋅⋅⋅NH3 complexes.
Zobrazit více v PubMed
I. Alkorta, J. Elguero, A. Frontera, Crystals 2020, 10, 180;
A. Docker, C. H. Guthrie, H. Kuhn, P. D. Beer, Angew. Chem. 2021, 133, 22144;
Angew. Chem. Int. Ed. 2021, 60, 21973.
L. P. Wolters, F. M. Bickelhaupt, ChemistryOpen 2012, 1, 96;
L. de Azevedo Santos, S. C. C. van der Lubbe, T. A. Hamlin, T. C. Ramalho, F. M. Bickelhaupt, ChemistryOpen 2021, 10, 391;
L. de Azevedo Santos, T. A. Hamlin, T. C. Ramalho, F. M. Bickelhaupt, Phys. Chem. Chem. Phys. 2021, 23, 13842.
B. Inscoe, H. Rathnayake, Y. Mo, J. Phys. Chem. A 2021, 125, 2944;
S. Scheiner, Acc. Chem. Res. 2013, 46, 280;
D. J. Pascoe, K. B. Ling, S. Cockroft, J. Am. Chem. Soc. 2017, 139, 15160;
V. Angarov, S. Kozuch, New J. Chem. 2018, 42, 1413;
N. Tarannam, R. Shukla, S. Kozuch, Phys. Chem. Chem. Phys. 2021, 23, 19948.
P. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys. 2013, 15, 11178;
P. Politzer, J. S. Murray, T. Clark, J. Phys. Chem. A 2019, 123, 10123.
T. Brinck, J. S. Murray, P. Politzer, Int. J. Quantum Chem. 1992, 44, 57;
N. Orangi, K. Eskandari, J. C. R. Thacker, L. A. Popelier, ChemPhysChem 2019, 20, 1922;
J. S. Murray, P. Politzer, ChemPhysChem 2021, 22, 1201;
T. Glodde, Y. V. Vishnevskiy, L. Zimmermann, H.-G. Stammler, B. Neumann, N. W. Mitzel, Angew. Chem. 2021, 133, 1542;
Angew. Chem. Int. Ed. 2021, 60, 1519;
G. Haberhauer, R. Gleiter, Angew. Chem. 2020, 132, 21423;
Angew. Chem. Int. Ed. 2020, 59, 21236;
M. Beau, S. Lee, S. Kim, W.-S. Han, O. Jeannin, M. Fourmigué, E. Aubert, E. Espinosa, I.-R. Jeon, Angew. Chem. 2021, 133, 370;
Angew. Chem. Int. Ed. 2021, 60, 366.
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215;
Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101;
E. van Lenthe, E. J. Baerends, J. Comput. Chem. 2003, 24, 1142;
E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1994, 101, 9783.
P. Vermeeren, S. C. C. van der Lubbe, C. Fonseca Guerra, F. M. Bickelhaupt, T. A. Hamlin, Nat. Protoc. 2020, 15, 649.
T. A. Hamlin, P. Vermeeren, C. Fonseca Guerra, F. M. Bickelhaupt, in Complementary Bonding Analyses (Ed.: S. Grabowski), De Gruyter, Berlin, 2021, pp. 199-212.
S. M. Huber, J. D. Scanlon, E. Jimenez-Izal, J. M. Ugalde, I. Infante, Phys. Chem. Chem. Phys. 2013, 15, 10350;
A. J. Stone, J. Am. Chem. Soc. 2013, 135, 7005;
E. Margiotta, S. C. C. van der Lubbe, L. de Azevedo Santos, G. Paragi, S. Moro, F. M. Bickelhaupt, C. Fonseca Guerra, J. Chem. Inf. Model. 2020, 60, 1317.
C. Wang, L. Guan, D. Danovich, S. Shaik, Y. Mo, J. Comput. Chem. 2016, 37, 34.
A. Krapp, F. M. Bickelhaupt, G. Frenking, Chem. Eur. J. 2006, 12, 9196.
P. Politzer, J. S. Murray, ChemPhysChem 2020, 21, 579;
P. Politzer, J. S. Murray, T. Clark, G. Resnati, Phys. Chem. Chem. Phys. 2017, 19, 32166.
J.-W. Zou, Y.-J. Jiang, M. Guo, G.-X. Hu, B. Zhang, H.-C. Liu, Q.-S. Yu, Chem. Eur. J. 2005, 11, 740;
T. Brinck, J. S. Murray, P. Politzer, Int. J. Quantum Chem. 1993, 48, 73;
P. Politzer, J. S. Murray, P. Lane, Int. J. Quantum Chem. 2007, 107, 3052;
S. Scheiner, J. Chem. Phys. 2020, 153, 140901;
M. Beau, S. Lee, S. Kim, W.-S. Han, O. Jeannin, M. Fourmigué, E. Aubert, E. Espinosa, I.-R. Jeon, Angew. Chem. 2021, 133, 370;
Angew. Chem. Int. Ed. 2021, 60, 366.
In Figure 6a, VS,max is ca. 1.8 Å from Cl along the molecular axis of FCl for isovalue of 0.001 a.u. In Figure 6b, VS,max is ca. 0.8 and 2.8 Å from Cl along the molecular axis of FCl for isovalues of 0.08 and 0.00001 a.u., respectively. For F−, the surface is ca. 0.5, 0.6, and 1.8 Å from the nucleus for isovalues of 0.4, 0.26, and 0.001 a.u., respectively.