Crystal Clear: Decoding Isocyanide Intermolecular Interactions through Crystallography

. 2024 Jan 19 ; 89 (2) : 957-974. [epub] 20240104

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38175810

The isocyanide group is the chameleon among the functional groups in organic chemistry. Unlike other multiatom functional groups, where the electrophilic and nucleophilic moieties are typically separated, isocyanides combine both functionalities in the terminal carbon. This unique feature can be rationalized using the frontier orbital concept and has significant implications for its intermolecular interactions and the reactivity of the functional group. In this study, we perform a Cambridge Crystallographic Database-supported analysis of isocyanide intramolecular interactions to investigate the intramolecular interactions of isocyanides in the solid state, excluding isocyanide-metal complexes. We discuss examples of different interaction classes, including the isocyanide as a hydrogen bond acceptor (RNC···HX), halogen bonding (RNC···X), and interactions involving the isocyanide and carbon atoms (RNC···C). The latter interaction serves as an intriguing illustration of a Bürgi-Dunitz trajectory and represents a crucial experimental detail in the well-known multicomponent reactions such as the Ugi- and Passerini-type mechanisms. Understanding the spectrum of intramolecular interactions that isocyanides can undergo holds significant implications in fields such as medicinal chemistry, materials science, and asymmetric catalysis.

Zobrazit více v PubMed

Dömling A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev. 2006, 106 (1), 17–89. 10.1021/cr0505728. PubMed DOI

Dömling A. Innovations and Inventions: Why Was the Ugi Reaction Discovered Only 37 Years after the Passerini Reaction?. Journal of Organic Chemistry 2023, 88 (9), 5242–5247. 10.1021/acs.joc.2c00792. PubMed DOI PMC

Dömling A.; Wang W.; Wang K. Chemistry and Biology Of Multicomponent Reactions. Chem. Rev. 2012, 112 (6), 3083–3135. 10.1021/cr100233r. PubMed DOI PMC

Neochoritis C. G.; Zhao T.; Dömling A. Tetrazoles via Multicomponent Reactions. Chem. Rev. 2019, 119 (3), 1970–2042. 10.1021/acs.chemrev.8b00564. PubMed DOI PMC

Taylor R.; Wood P. A. A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts. Chem. Rev. 2019, 119 (16), 9427–9477. 10.1021/acs.chemrev.9b00155. PubMed DOI

Kuhn B.; Mohr P.; Stahl M. Intramolecular Hydrogen Bonding in Medicinal Chemistry. J. Med. Chem. 2010, 53 (6), 2601–2611. 10.1021/jm100087s. PubMed DOI

Brameld K. A.; Kuhn B.; Reuter D. C.; Stahl M. Small Molecule Conformational Preferences Derived from Crystal Structure Data. A Medicinal Chemistry Focused Analysis. J. Chem. Inf. Model. 2008, 48 (1), 1–24. 10.1021/ci7002494. PubMed DOI

Schärfer C.; Schulz-Gasch T.; Ehrlich H.-C.; Guba W.; Rarey M.; Stahl M. Torsion Angle Preferences in Druglike Chemical Space: A Comprehensive Guide. J. Med. Chem. 2013, 56 (5), 2016–2028. 10.1021/jm3016816. PubMed DOI

Bissantz C.; Kuhn B.; Stahl M. A Medicinal Chemist’s Guide to Molecular Interactions. J. Med. Chem. 2010, 53 (14), 5061–5084. 10.1021/jm100112j. PubMed DOI PMC

Lieke W. Ueber das Cyanallyl. Justus Liebigs Annalen der Chemie 1859, 112 (3), 316–321. 10.1002/jlac.18591120307. DOI

Bano H.; Yousuf S. Crystal structure of p-toluenesulfonylmethyl isocyanide. Acta Crystallographica Section E 2015, 71 (6), o412.10.1107/S2056989015008816. PubMed DOI PMC

Ruijter E.; Scheffelaar R.; Orru R. V. A. Multicomponent Reaction Design in the Quest for Molecular Complexity and Diversity. Angew. Chem., Int. Ed. 2011, 50 (28), 6234–6246. 10.1002/anie.201006515. PubMed DOI

Mironov M. A. General Aspects of Isocyanide Reactivity. Isocyanide Chemistry 2012, 35–73. 10.1002/9783527652532.ch2. DOI

Dömling A.; Ugi I. Multicomponent Reactions with Isocyanides. Angew. Chem., Int. Ed. 2000, 39 (18), 3168–3210. 10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U. PubMed DOI

Marcaccini S.; Torroba T. The Use of Isocyanides in Heterocyclic Synthesis. a Review. Organic Preparations and Procedures International 1993, 25 (2), 141–208. 10.1080/00304949309457947. DOI

Boltjes A.; Dömling A. The Groebke-Blackburn-Bienaymé Reaction. Eur. J. Org. Chem. 2019, 2019 (42), 7007–7049. 10.1002/ejoc.201901124. PubMed DOI PMC

Kunig V. B. K.; Ehrt C.; Dömling A.; Brunschweiger A. Isocyanide Multicomponent Reactions on Solid-Phase-Coupled DNA Oligonucleotides for Encoded Library Synthesis. Org. Lett. 2019, 21 (18), 7238–7243. 10.1021/acs.orglett.9b02448. PubMed DOI

Gao L.; Shaabani S.; Reyes Romero A.; Xu R.; Ahmadianmoghaddam M.; Dömling A. ‘Chemistry at the speed of sound’: automated 1536-well nanoscale synthesis of 16 scaffolds in parallel. Green Chem. 2023, 25 (4), 1380–1394. 10.1039/D2GC04312B. PubMed DOI PMC

Mendez D.; Gaulton A.; Bento A. P.; Chambers J.; De Veij M.; Félix E.; Magariños M. P.; Mosquera J. F.; Mutowo P.; Nowotka M.; Gordillo-Marañón M.; Hunter F.; Junco L.; Mugumbate G.; Rodriguez-Lopez M.; Atkinson F.; Bosc N.; Radoux C. J.; Segura-Cabrera A.; Hersey A.; Leach A. R. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47 (D1), D930–D940. 10.1093/nar/gky1075. PubMed DOI PMC

Groom C. R.; Bruno I. J.; Lightfoot M. P.; Ward S. C. The Cambridge Structural Database. Acta Crystallographica Section B 2016, 72 (2), 171–179. 10.1107/S2052520616003954. PubMed DOI PMC

Rothe W. Das neue Antibiotikum Xanthocillin. Dtsch. Med. Wochenschr. 1954, 79 (27/28), 1080–1081. 10.1055/s-0028-1119307. PubMed DOI

Technetium Tc 99m Sestamibi. In Drugs and Lactation Database (LactMed); National Institute of Child Health and Human Development: Bethesda, MD, 2006. PubMed

Hübner I.; Shapiro J. A.; Hoßmann J.; Drechsel J.; Hacker S. M.; Rather P. N.; Pieper D. H.; Wuest W. M.; Sieber S. A. Broad Spectrum Antibiotic Xanthocillin X Effectively Kills Acinetobacter baumannii via Dysregulation of Heme Biosynthesis. ACS Central Science 2021, 7 (3), 488–498. 10.1021/acscentsci.0c01621. PubMed DOI PMC

Das A. K.; Mazumdar S. K. 3′-Isocyano-2’,3′-dideoxyuridine (NCddUrd): a Nucleoside Analogue. Acta Crystallographica Section C 1995, 51 (8), 1652–1654. 10.1107/S0108270195000114. DOI

Karl R.; Lemmen P.; Ugi I. Synthesis of 3′-Isocyano-3′-deoxythymidine. Synthesis 1989, 1989 (09), 718–719. 10.1055/s-1989-27373. DOI

Kumar K. TosMIC: A Powerful Synthon for Cyclization and Sulfonylation. ChemistrySelect 2020, 5 (33), 10298–10328. 10.1002/slct.202001344. DOI

Ibad M. F.; Langer P.; Reiß F.; Schulz A.; Villinger A. Catalytic Trimerization of Bis-silylated Diazomethane. J. Am. Chem. Soc. 2012, 134 (42), 17757–17768. 10.1021/ja308104k. PubMed DOI

Scheuer P. J. Isocyanides and cyanides as natural products. Acc. Chem. Res. 1992, 25 (10), 433–439. 10.1021/ar00022a001. DOI

Nickles G. R.; Oestereicher B.; Keller N. P.; Drott M. T. Mining for a new class of fungal natural products: the evolution, diversity, and distribution of isocyanide synthase biosynthetic gene clusters. Nucleic Acids Res. 2023, 51 (14), 7220–7235. 10.1093/nar/gkad573. PubMed DOI PMC

Massarotti A.; Brunelli F.; Aprile S.; Giustiniano M.; Tron G. C. Medicinal Chemistry of Isocyanides. Chem. Rev. 2021, 121 (17), 10742–10788. 10.1021/acs.chemrev.1c00143. PubMed DOI

Zhu Y.; Liao J.-Y.; Qian L. Isocyanides: Promising Functionalities in Bioorthogonal Labeling of Biomolecules. Front. Chem. 2021, 9, 670751.10.3389/fchem.2021.670751. PubMed DOI PMC

Collet J. W.; Roose T. R.; Weijers B.; Maes B. U. W.; Ruijter E.; Orru R. V. A. Recent Advances in Palladium-Catalyzed Isocyanide Insertions. Molecules 2020, 25 (21), 4906.10.3390/molecules25214906. PubMed DOI PMC

Russo C.; Brunelli F.; Cesare Tron G.; Giustiniano M. Isocyanide-Based Multicomponent Reactions Promoted by Visible Light Photoredox Catalysis. Chem. - Eur. J. 2023, 29 (15), e202203150.10.1002/chem.202203150. PubMed DOI

Del Rio Flores A.; Barber C. C.; Narayanamoorthy M.; Gu D.; Shen Y.; Zhang W. Biosynthesis of Isonitrile- and Alkyne-Containing Natural Products. Annu. Rev. Chem. Biomol. Eng. 2022, 13 (1), 1–24. 10.1146/annurev-chembioeng-092120-025140. PubMed DOI PMC

Joost M.; Nava M.; Transue W. J.; Cummins C. C. An exploding N-isocyanide reagent formally composed of anthracene, dinitrogen and a carbon atom. Chem. Commun. 2017, 53 (83), 11500–11503. 10.1039/C7CC06516G. PubMed DOI

Stolzenberg H.; Weinberger B.; Fehlhammer W. P.; Pühlhofer F. G.; Weiss R. Free and Metal-Coordinated (N-Isocyanimino)triphenylphosphorane: X-ray Structures and Selected Reactions. Eur. J. Inorg. Chem. 2005, 2005 (21), 4263–4271. 10.1002/ejic.200500196. DOI

Ojeda-Carralero G. M.; Ceballos L. G.; Coro J.; Rivera D. G. One Reacts as Two: Applications of N-Isocyaniminotriphenylphosphorane in Diversity-Oriented Synthesis. ACS Comb. Sci. 2020, 22 (10), 475–494. 10.1021/acscombsci.0c00111. PubMed DOI

Møllendal H.; Samdal S.; Matrane A.; Guillemin J.-C. Synthesis, Microwave Spectrum, and Dipole Moment of Allenylisocyanide (H2C=C=CHNC), a Compound of Potential Astrochemical Interest. J. Phys. Chem. A 2011, 115 (27), 7978–7983. 10.1021/jp204296n. PubMed DOI

Mariani A.; Russell D. A.; Javelle T.; Sutherland J. D. A Light-Releasable Potentially Prebiotic Nucleotide Activating Agent. J. Am. Chem. Soc. 2018, 140 (28), 8657–8661. 10.1021/jacs.8b05189. PubMed DOI PMC

Fukui K.; Yonezawa T.; Shingu H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys. 1952, 20 (4), 722–725. 10.1063/1.1700523. DOI

Albright T. A.; Burdett J. K.; Whangbo M.-H.. Orbital interactions in chemistry, 2nd ed.; Wiley: Hoboken, NJ, 2013; p xii, 819 pages.

Ramozzi R.; Chéron N.; Braïda B.; Hiberty P. C.; Fleurat-Lessard P. A valence bond view of isocyanides’ electronic structure. New J. Chem. 2012, 36 (5), 1137–1140. 10.1039/c2nj40050b. DOI

Gomes G. d. P.; Loginova Y.; Vatsadze S. Z.; Alabugin I. V. Isonitriles as Stereoelectronic Chameleons: The Donor–Acceptor Dichotomy in Radical Additions. J. Am. Chem. Soc. 2018, 140 (43), 14272–14288. 10.1021/jacs.8b08513. PubMed DOI

Scheiner S. The Hydrogen Bond: A Hundred Years and Counting. Journal of the Indian Institute of Science 2020, 100 (1), 61–76. 10.1007/s41745-019-00142-8. DOI

Herschlag D.; Pinney M. M. Hydrogen Bonds: Simple after All?. Biochemistry 2018, 57 (24), 3338–3352. 10.1021/acs.biochem.8b00217. PubMed DOI

van der Lubbe S. C. C.; Fonseca Guerra C. The Nature of Hydrogen Bonds: A Delineation of the Role of Different Energy Components on Hydrogen Bond Strengths and Lengths. Chem. - Asian J. 2019, 14 (16), 2760–2769. 10.1002/asia.201900717. PubMed DOI PMC

Rodríguez J.; Nieto R. M.; Hunter L. M.; Diaz M. C.; Crews P.; Lobkovsky E.; Clardy J. Variation among known kalihinol and new kalihinene diterpenes from the sponge Acanthella cavernosa. Tetrahedron 1994, 50 (38), 11079–11090. 10.1016/S0040-4020(01)89411-4. DOI

Jones C.; Mills D. P.; Rose R. P. Oxidative addition of an imidazolium cation to an anionic gallium(I) N-heterocyclic carbene analogue: Synthesis and characterisation of novel gallium hydride complexes. J. Organomet. Chem. 2006, 691 (13), 3060–3064. 10.1016/j.jorganchem.2006.03.018. DOI

Zheng Q.; Kurpiewska K.; Dömling A. SNAr Isocyanide Diversification. Eur. J. Org. Chem. 2022, 2022 (3), e20210102310.1002/ejoc.202101023. DOI

Lu Z.; Yang M.; Chen P.; Xiong X.; Li A. Total Synthesis of Hapalindole-Type Natural Products. Angew. Chem., Int. Ed. 2014, 53 (50), 13840–13844. 10.1002/anie.201406626. PubMed DOI

Hohlman R. M.; Sherman D. H. Recent advances in hapalindole-type cyanobacterial alkaloids: biosynthesis, synthesis, and biological activity. Natural Product Reports 2021, 38 (9), 1567–1588. 10.1039/D1NP00007A. PubMed DOI PMC

Schwartz E.; Lim E.; Gowda C. M.; Liscio A.; Fenwick O.; Tu G.; Palermo V.; de Gelder R.; Cornelissen J. J. L. M.; Van Eck E. R. H.; Kentgens A. P. M.; Cacialli F.; Nolte R. J. M.; Samorì P.; Huck W. T. S.; Rowan A. E. Synthesis, Characterization, and Surface Initiated Polymerization of Carbazole Functionalized Isocyanides. Chem. Mater. 2010, 22 (8), 2597–2607. 10.1021/cm903664g. DOI

Kieser J. M.; Kinney Z. J.; Gaffen J. R.; Evariste S.; Harrison A. M.; Rheingold A. L.; Protasiewicz J. D. Three Ways Isolable Carbenes Can Modulate Emission of NH-Containing Fluorophores. J. Am. Chem. Soc. 2019, 141 (30), 12055–12063. 10.1021/jacs.9b04864. PubMed DOI

Derewenda Z. S.; Hawro I.; Derewenda U. C—H···O hydrogen bonds in kinase-inhibitor interfaces. IUBMB Life 2020, 72 (6), 1233–1242. 10.1002/iub.2282. PubMed DOI PMC

Jiang L.; Lai L. CH···O Hydrogen Bonds at Protein-Protein Interfaces. J. Biol. Chem. 2002, 277 (40), 37732–37740. 10.1074/jbc.M204514200. PubMed DOI

Wang X.; Ye W.; Kong T.; Wang C.; Ni C.; Hu J. Divergent S- and C-Difluoromethylation of 2-Substituted Benzothiazoles. Org. Lett. 2021, 23 (21), 8554–8558. 10.1021/acs.orglett.1c03267. PubMed DOI

Li X.; Zarganes-Tzitzikas T.; Kurpiewska K.; Dömling A. Amenamevir by Ugi-4CR. Green Chem. 2023, 25 (4), 1322–1325. 10.1039/D2GC04869H. DOI

Butera R.; Shrinidhi A.; Kurpiewska K.; Kalinowska-Tłuścik J.; Dömling A. Fourfold symmetric MCR’s via the tetraisocyanide 1,3-diisocyano-2,2-bis(isocyanomethyl)propane. Chem. Commun. 2020, 56 (73), 10662–10665. 10.1039/D0CC04522E. PubMed DOI

Giffin N. A.; Makramalla M.; Hendsbee A. D.; Robertson K. N.; Sherren C.; Pye C. C.; Masuda J. D.; Clyburne J. A. C. Anhydrous TEMPO-H: reactions of a good hydrogen atom donor with low-valent carbon centres. Organic & Biomolecular Chemistry 2011, 9 (10), 3672–3680. 10.1039/c0ob00999g. PubMed DOI

Wang Z.; Li Y.; Han X.; Zhang D.; Hou H.; Xiao L.; Li G. Kalihiacyloxyamides A-H, α-acyloxy amide substituted kalihinane diterpenes isolated from the sponge Acanthella cavernosa collected in the South China Sea. Phytochemistry 2023, 206, 113512.10.1016/j.phytochem.2022.113512. PubMed DOI

Neochoritis C. G.; Ghonchepour E.; Miraki M. K.; Zarganes-Tzitzikas T.; Kurpiewska K.; Kalinowska-Tłuścik J.; Dömling A. Structure and Reactivity of Glycosyl Isocyanides. Eur. J. Org. Chem. 2019, 2019 (1), 50–55. 10.1002/ejoc.201801588. PubMed DOI PMC

Chan T.-L.; Mak T. C. W. X-Ray crystallographic study of guest–molecule orientations in the β-hydroquinone clathrates of acetonitrile and methyl isocyanide. Journal of the Chemical Society, Perkin Transactions 2 1983, 6, 777–781. 10.1039/P29830000777. DOI

Ollis W. D.; Rey M.; Godtfredsen W. O.; Rastrup-Andersen N.; Vangedal S.; King T. J. The constitution of the antibiotic trichoviridin. Tetrahedron 1980, 36 (4), 515–520. 10.1016/0040-4020(80)80027-5. DOI

Brady S. F.; Clardy J. Cloning and Heterologous Expression of Isocyanide Biosynthetic Genes from Environmental DNA. Angew. Chem., Int. Ed. 2005, 44 (43), 7063–7065. 10.1002/anie.200501941. PubMed DOI

Burnham L. E.; Gano K. J.; Young A. M.; Risley J. M.; Jones D. S. N-(4-Isocyanophenyl)succinamic acid. Acta Crystallogr., Sect. E 2012, 68 (7), o2078.10.1107/S1600536812025226. PubMed DOI PMC

Liu Q.; Yue S.; Yan Z.; Xie Y.; Cai H. Cyano and Isocyano-substituted Tetraphenylethylene with AIE Behavior and Mechanoresponsive Behavior. Chin. J. Struct. Chem. 2022, 41 (4), 2204075–2204082. 10.14102/j.cnki.0254-5861.2021-0049. DOI

Schwartz E.; Koepf M.; Kitto H. J.; Nolte R. J. M.; Rowan A. E. Helical poly(isocyanides): past, present and future. Polym. Chem. 2011, 2 (1), 33–47. 10.1039/C0PY00246A. DOI

Burgi H. B.; Dunitz J. D.; Shefter E. Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group. J. Am. Chem. Soc. 1973, 95 (15), 5065–5067. 10.1021/ja00796a058. DOI

Buergi H. B.; Lehn J. M.; Wipff G. Ab initio study of nucleophilic addition to a carbonyl group. J. Am. Chem. Soc. 1974, 96 (6), 1956–1957. 10.1021/ja00813a062. DOI

Bürgi H. B.; Dunitz J. D.; Lehn J. M.; Wipff G. Stereochemistry of reaction paths at carbonyl centres. Tetrahedron 1974, 30 (12), 1563–1572. 10.1016/S0040-4020(01)90678-7. DOI

Rodríguez H. A.; Bickelhaupt F. M.; Fernández I. Origin of the Bürgi-Dunitz Angle. ChemPhysChem 2023, 24 (17), e202300379.10.1002/cphc.202300379. PubMed DOI

Bürgi H. B.; Dunitz J. D.; Shefter E. L. I. Pharmacological Implications of the Conformation of the Methadone Base. Nature New Biology 1973, 244 (136), 186–188. 10.1038/newbio244186b0. PubMed DOI

Neochoritis C. G.; Ghonchepour E.; Miraki M. K.; Zarganes-Tzitzikas T.; Kurpiewska K.; Kalinowska-Tłuścik J.; Dömling A. Structure and Reactivity of Glycosyl Isocyanides. Eur. J. Org. Chem. 2019, 2019 (1), 50–55. 10.1002/ejoc.201801588. PubMed DOI PMC

Holovics T. C.; Robinson R. E.; Weintrob E. C.; Toriyama M.; Lushington G. H.; Barybin M. V. The 2,6-Diisocyanoazulene Motif: Synthesis and Efficient Mono- and Heterobimetallic Complexation with Controlled Orientation of the Azulenic Dipole. J. Am. Chem. Soc. 2006, 128 (7), 2300–2309. 10.1021/ja053933+. PubMed DOI

Zhang Y.; Maverick A. W. Preparation of an Isocyano-β-diketone via its Metal Complexes, by Use of Metal Ions as Protecting Groups. Inorg. Chem. 2009, 48 (22), 10512–10518. 10.1021/ic900202e. PubMed DOI

Sun B.-B.; Liu K.; Gao Q.; Fang W.; Lu S.; Wang C.-R.; Yao C.-Z.; Cao H.-Q.; Yu J. Enantioselective Ugi and Ugi-azide reactions catalyzed by anionic stereogenic-at-cobalt(III) complexes. Nat. Commun. 2022, 13 (1), 7065.10.1038/s41467-022-34887-1. PubMed DOI PMC

Wang Q.; Wang D.-X.; Wang M.-X.; Zhu J. Still Unconquered: Enantioselective Passerini and Ugi Multicomponent Reactions. Acc. Chem. Res. 2018, 51 (5), 1290–1300. 10.1021/acs.accounts.8b00105. PubMed DOI

Buschmann J.; Kleinhenz S.; Lentz D.; Luger P.; Madappat K. V.; Preugschat D.; Thrasher J. S. Crystal and Molecular Structures of Trifluoroacrylonitrile, F2CCF–CN, and Trifluorovinyl Isocyanide, F2CCF–NC, by Low-Temperature X-ray Crystallography and ab Initio Calculations. Inorg. Chem. 2000, 39 (13), 2807–2812. 10.1021/ic000264m. PubMed DOI

Britton D.; Noland W. E.; Tritch K. J. Two new polytypes of 2,4,6-tribromobenzonitrile. Acta Crystallographica Section E 2016, 72 (2), 178–183. 10.1107/S2056989016000256. PubMed DOI PMC

Ramasubbu N.; Parthasarathy R.; Murray-Rust P. Angular preferences of intermolecular forces around halogen centers: preferred directions of approach of electrophiles and nucleophiles around carbon-halogen bond. J. Am. Chem. Soc. 1986, 108 (15), 4308–4314. 10.1021/ja00275a012. DOI

Lommerse J. P. M.; Stone A. J.; Taylor R.; Allen F. H. The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen. J. Am. Chem. Soc. 1996, 118 (13), 3108–3116. 10.1021/ja953281x. DOI

Wilcken R.; Zimmermann M. O.; Lange A.; Joerger A. C.; Boeckler F. M. Principles and Applications of Halogen Bonding in Medicinal Chemistry and Chemical Biology. J. Med. Chem. 2013, 56 (4), 1363–1388. 10.1021/jm3012068. PubMed DOI

Cavallo G.; Metrangolo P.; Milani R.; Pilati T.; Priimagi A.; Resnati G.; Terraneo G. The Halogen Bond. Chem. Rev. 2016, 116 (4), 2478–2601. 10.1021/acs.chemrev.5b00484. PubMed DOI PMC

de Azevedo Santos L.; Ramalho T. C.; Hamlin T. A.; Bickelhaupt F. M. Intermolecular Covalent Interactions: Nature and Directionality. Chem. - Eur. J. 2023, 29 (14), e202203791.10.1002/chem.202203791. PubMed DOI

Mallada B.; Gallardo A.; Lamanec M.; de la Torre B.; Špirko V.; Hobza P.; Jelinek P. Real-space imaging of anisotropic charge of σ-hole by means of Kelvin probe force microscopy. Science (New York, N.Y.) 2021, 374 (6569), 863–867. 10.1126/science.abk1479. PubMed DOI

Zeller M.; Hunter A. D. p-Nitrophenyl isocyanide. Acta Crystallogr., Sect. C 2004, 60 (6), o415.10.1107/S0108270104007115. PubMed DOI

Pink M.; Britton D.; Noland W. E.; Pinnow M. J. 2,4,6-Trichlorophenylisonitrile and 2,4,6-trichlorobenzonitrile. Acta Crystallographica Section C 2000, 56 (10), 1271–1273. 10.1107/S0108270100010234. PubMed DOI

Noland W. E.; Tritch K. J. 2,6-Dibromo-4-chlorophenyl isocyanide. IUCrData 2018, 3 (1), x171819.10.1107/S2414314617018193. DOI

Aakeröy C. B.; Hurley E. P.; Desper J. Modulating Supramolecular Reactivity Using Covalent “Switches” on a Pyrazole Platform. Cryst. Growth Des. 2012, 12 (11), 5806–5814. 10.1021/cg301391s. DOI

Kim W.; Chen T. Y.; Cha L.; Zhou G.; Xing K.; Canty N. K.; Zhang Y.; Chang W. C. Elucidation of divergent desaturation pathways in the formation of vinyl isonitrile and isocyanoacrylate. Nat. Commun. 2022, 13 (1), 5343.10.1038/s41467-022-32870-4. PubMed DOI PMC

Galli U.; Tron G. C.; Purghè B.; Grosa G.; Aprile S. Metabolic Fate of the Isocyanide Moiety: Are Isocyanides Pharmacophore Groups Neglected by Medicinal Chemists?. Chemical research in toxicology 2020, 33 (4), 955–966. 10.1021/acs.chemrestox.9b00504. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace