Chalcogen bonds: Hierarchical ab initio benchmark and density functional theory performance study

. 2021 Apr 15 ; 42 (10) : 688-698. [epub] 20210205

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33543482

Grantová podpora
CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico
CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
FAPEMIG Fundação de Amparo à Pesquisa do Estado de Minas Gerais
NWO Netherlands Organization for Scientific Research

We have performed a hierarchical ab initio benchmark and DFT performance study of D2 Ch•••A- chalcogen bonds (Ch = S, Se; D, A = F, Cl). The ab initio benchmark study is based on a series of ZORA-relativistic quantum chemical methods [HF, MP2, CCSD, CCSD(T)], and all-electron relativistically contracted variants of Karlsruhe basis sets (ZORA-def2-SVP, ZORA-def2-TZVPP, ZORA-def2-QZVPP) with and without diffuse functions. The highest-level ZORA-CCSD(T)/ma-ZORA-def2-QZVPP counterpoise-corrected complexation energies (ΔECPC ) are converged within 1.1-3.4 kcal mol-1 and 1.5-3.1 kcal mol-1 with respect to the method and basis set, respectively. Next, we used the ZORA-CCSD(T)/ma-ZORA-def2-QZVPP (ΔECPC ) as reference data for analyzing the performance of 13 different ZORA-relativistic DFT approaches in combination with the Slater-type QZ4P basis set. We find that the three-best performing functionals are M06-2X, B3LYP, and M06, with mean absolute errors (MAE) of 4.1, 4.2, and 4.3 kcal mol-1 , respectively. The MAE for BLYP-D3(BJ) and PBE amount to 8.5 and 9.3 kcal mol-1 , respectively.

Zobrazit více v PubMed

(a) Gleiter R., Haberhauer G., Werz D. B., Rominger F., Bleiholder C., Chem. Rev. 2018, 118, 2010. PubMed

(b) Riwar L. ‐J., Trapp N., Root K., Zenobi R., Diederich F., Angew. Chem. Int. Ed. 2018, 57, 17259. PubMed

(c) Shukla R., Chopra D., Cryst. Growth Des. 2016, 16, 6734.

(d) Fanfrlík J., Přáda A., Padělková Z., Pecina A., Macháček J., Lepšík M., Holub J., Růžička A., Hnyk D., Hobza P., Angew. Chem., Int. Ed. 2014, 53, 10139. PubMed

(e) Thomas S. P., Kumar V., Alhameedi K., Guru Row T. N., Chem. – Eur. J. 2019, 25, 3591. PubMed

(f) Scilabra P., Murray J. S., Terraneo G., Resnati G., Cryst. Growth Des. 2019, 19, 1149.

(g) Rahman F. ‐U., Tzeli D., Petsalakis I. D., Theodorakopoulos G., Ballester P., Rebek J. Jr., Yu Y., J. Am. Chem. Soc. 2020, 142, 5876. PubMed

(h) Zeng R., Gong Z., Yan Q., J. Org. Chem. 2020, 85, 8397. PubMed

(i) Ho P. C., Wang J. Z., Meloni F., Vargas‐Baca I., Coord. Chem. Rev. 2020, 422, 213464.

(j) Mehrparvar S., Wölper C., Gleiter R., Haberhauer G., Angew. Chem. Int. Ed. 2020, 59, 17154. PubMed PMC

(a) Benz S., Macchione M., Verolet Q., Mareda J., Sakai N., Matile S., J. Am. Chem. Soc. 2016, 138, 9093. PubMed

(b) Macchione M., Tsemperouli M., Goujon A., Mallia A. R., Sakai N., Sugihara K., Matile S., Helv. Chim. Acta 2018, 101, 1800014.

(c) Iwaoka M., in Noncovalent Forces. Challenges and Advances in Computational Chemistry and Physics (Ed: Scheiner S.), Springer, Cham: 2015, p. 265.

(d) Lee L. M., Tsemperouli M., Poblador‐Bahamonde A. I., Benz S., Sakai N., Sugihara K., Matile S., J. Am. Chem. Soc. 2019, 141, 810. PubMed

(e) Lutz P. B., Bayse C. A., J. Inorg. Biochem. 2016, 157, 94. PubMed

(f) Iwaoka M., Babe N., Sulfur, and Silicon 2015, 190, 1257.

(g) Thomas S. P., Jayatilaka D., Guru Row T. N., Phys. Chem. Chem. Phys. 2015, 17, 25411. PubMed

(h) Lange A., Günther M., Büttner F. M., Zimmermann M. O., Heidrich J., Hennig S., Zahn S., Schall C., Sievers‐Engler A., Ansideri F., Koch P., Lämmerhofer M., Stehle T., Laufer S. A., Boeckler F. M., J. Am. Chem. Soc. 2015, 137, 14640. PubMed

(i) Galmés B., Juan‐Bals A., Frontera A., Resnati G., Chem. – Eur. J. 2020, 26, 4599. PubMed

(a) Bamberger J., Ostler F., Mancheño O. G., ChemCatChem 2019, 11, 5198. PubMed PMC

(b) Mahmudov K. T., Kopylovich M. N., Guedes Da Silva M. F. C., Pombeiro A. J. L., Dalt. Trans. 2017, 46, 10121. PubMed

(c) Benz S., López‐Andarias J., Mareda J., Sakai N., Matile S., Angew. Chem. Int. Ed. 2017, 56, 812. PubMed

(d) Wang W., Zhu H., Feng L., Yu Q., Hao J., Zhu R., Wang Y., J. Am. Chem. Soc. 2020, 142, 3117. PubMed

(e) Li Y., Meng L., Sun C., Zeng Y., J. Phys. Chem. A 2020, 124, 3815. PubMed

(a) Vogel L., Wonner P., Huber S. M., Angew. Chem. Int. Ed. 2019, 58, 1880. PubMed

(b) Wang W., Ji B., Zhang Y., J. Phys. Chem. A 2009, 113, 8132. PubMed

(c) Brezgunova M. E., Lieffrig J., Aubert E., Dahaoui S., Fertey P., Lebègue S., Ángyán J. G., Fourmigué M., Espinosa E., Cryst. Growth Des. 2013, 13, 3283.

(d) Politzer P., Murray J. S., Concha M. C., J. Mol. Model. 2008, 14, 659. PubMed

(e) Clark T., Hennemann M., Murray J. S., Politzer P., J. Mol. Model. 2007, 13, 291. PubMed

(f) Lu J., Scheiner S., J. Phys. Chem. A 2020, 124, 7716. PubMed

(g) Scheiner S., Michalczyk M., Zierkiewicz W., Coord. Chem. Rev. 2020, 405, 213136.

(h) Fellowes T., Harris B. L., White J. M., Chem. Commun. 2020, 56, 3313. PubMed

(i) Haberhauer G., Gleiter R., Angew. Chem. Int. Ed. 2020, 59, 2. PubMed PMC

(j) Bauzá A., Frontera A., ChemPhysChem 2020, 21, 26. PubMed

(a) Wolters L. P., Bickelhaupt F. M., ChemistryOpen. 2012, 1, 96. PubMed PMC

(b) Bortoli M., Ahmad S. M., Hamlin T. A., Bickelhaupt F. M., Orian L., Phys. Chem. Chem. Phys. 2018, 20, 27592. PubMed

(c) Pascoe D. J., Ling K. B., Cockroft S. L., J. Am. Chem. Soc. 2017, 139, 15160. PubMed

(d) Huber S. M., Scanlon J. D., Jimenez‐Izal E., Ugalde J. M., Infante I., Phys. Chem. Chem. Phys. 2013, 15, 10350. PubMed

(a) Wolters L. P., Bickelhaupt F. M., WIREs Comput. Mol. Sci. 2015, 5, 324. PubMed PMC

(b) Bickelhaupt F. M., J. Comput. Chem. 1999, 20, 114.

(c) Stasyuk O. A., Sedlak R., Fonseca Guerra C., Hobza P., J. Chem. Theory Comput. 2018, 14, 3440. PubMed

(d) Hamlin T. A., Fernandez I., Bickelhaupt F. M., Angew. Chem. Int. Ed. 2019, 58, 8922. PubMed PMC

(e) Vermeeren P., van der Lubbe S. C. C., Fonseca Guerra C., Bickelhaupt F. M., Hamlin T. A., Nat. Protoc. 2020, 15, 649. PubMed

(a) Forni A., Pieraccini S., Rendine S., Sironi M., J. Comput. Chem. 2014, 35, 386. PubMed

(b) Řezáč J., Hobza P., Chem. Rev. 2016, 116, 5038. PubMed

(c) de Jong G. T., Solà M., Visscher L., Bickelhaupt F. M., J. Chem. Phys. 2004, 121, 9982. PubMed

(d) de Jong G. T., Geerke D. P., Diefenbach A., Bickelhaupt F. M., Chem. Phys. 2005, 313, 261.

(e) Kim Y., Song S., Sim E., Burke K., J. Phys. Chem. Lett. 2019, 10, 295. PubMed

(f) Witte J., Neaton J. B., Head‐Gordon M., J. Chem. Phys. 2016, 144, 194306. PubMed

(g) Truhlar D. G., Chem. Phys. Lett. 1998, 294, 45.

(h) Eshuis H., Furche F., J. Chem. Phys. 2012, 136, 84105. PubMed

(i) Bauzá A., Alkorta I., Frontera A., Elguero J., J. Chem. Theory Comput. 2013, 9, 5201. PubMed

(j) Otero‐de‐la‐Roza A., Johnson E. R., DiLabio G. A., J. Chem. Theory Comput. 2014, 10, 5436. PubMed

Boys S. F., Bernardi F., Mol. Phys. 1970, 19, 553.

Neese F., WIREs Comput. Mol. Sci. 2012, 2, 73.

(a) Weigend F., Ahlrichs R., Phys. Chem. Chem. Phys. 2005, 7, 3297. PubMed

(b) Pantazis D. A., Chen X., Landis C. R., Neese F., J. Chem. Theory 2008, 4, 908. PubMed

(c) Zheng J., Xu X., Truhlar D. G., Theor. Chem. Acc. 2011, 128, 295.

Raghavachari K., Trucks G. W., Pople J. A., Head‐Gordon M., Chem. Phys. Lett. 1989, 157, 479.

Møller C., Plesset M. S., Phys. Rev. 1934, 46, 618.

Purvis G. D., Bartlett R. J., J. Chem. Phys. 1982, 76, 1910.

van Lenthe E., Baerends E. J., Snijders J. G., J. Chem. Phys. 1994, 101, 9783.

(a) te Velde G., Bickelhaupt F. M., Baerends E. J., Fonseca Guerra C., van Gisbergen S. J. A., Snijders J. G., Ziegler T., J. Comput. Chem. 2001, 22, 931.

(b) Fonseca Guerra C., Snijders J. G., te Velde G., Baerends E. J., Theor. Chem. Acc. 1998, 99, 391.

(c) Baerends E. J., Ziegler T., Atkins A. J., Autschbach J., Bashford D., Bérces A., Bickelhaupt F. M., Bo C., Boerrigter P. M., Cavallo L., Chong D. P., Chulhai D. V., Deng L., Dickson R. M., Dieterich J. M., Ellis D. E., van Faassen M., Fan L., Fischer T. H., Fonseca Guerra C., Franchini M., Ghysels A., Giammona A., van Gisbergen S. J. A., Götz A. W., Groeneveld J. A., Gritsenko O. V., Grüning M., Gusarov S., Harris F. E., van den Hoek P., Jacob C. R., Jacobsen H., Jensen L., Kaminski J. W., van Kessel G., Kootstra F., Kovalenko A., Krykunov M. V., van Lenthe E., McCormack D. A., Michalak A., Mitoraj M., Morton S. M., Neugebauer J., Nicu V. P., Noodleman L., Osinga V. P., Patchkovskii S., Pavanello M., Peeples C. A., Philipsen P. H. T., Post D., Pye C. C., Ravenek W., Rodríguez J. I., Ros P., Rüger R., Schipper P. R. T., van Schoot H., Schreckenbach G., Seldenthuis J. S., Seth M., Snijders J. G., Solà M., Swart M., Swerhone D., te Velde G., Vernooijs P., Versluis L., Visscher L., Visser O., Wang F., Wesolowski T. A., van Wezenbeek E. M., Wiesenekker G., Wolff S. K., Woo T. K., Yakovlev A. L., ADF2017.103, SCM Theoretical Chemistry; Vrije Universiteit: Amsterdam (The Netherlands); http://www.scm.com.

Perdew P. J., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed

(a) Becke A. D., Phys. Rev. A 1988, 38, 3098. PubMed

(b) Perdew J. P., Phys. Rev. B 1986, 33, 8822. PubMed

(a) Lee C., Yang W., Parr R. G., Phys. Rev. B 1988, 37, 785. PubMed

(b) Johnson B. G., Gill P. M. W., Pople J. A., J. Chem. Phys. 1993, 98, 5612.

(c) Russo T. V., Martin R. L., Hay P. J., J. Chem. Phys. 1994, 101, 7729.

Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J., J. Phys. Chem. 1994, 98, 11623.

(a) Swart M., Solà M., Bickelhaupt F. M., J. Chem. Phys. 2009, 131, 94103. PubMed

(b) Swart M., Solà M., Bickelhaupt F. M., J. Comput. Methods Sci. Eng. 2009, 9, 69.

(a) Zhao Y., Truhlar D. G., Theor. Chem. Acc. 2008, 120, 215.

(b) Zhao Y., Truhlar D. G., J. Chem. Phys. 2006, 125, 194101. PubMed

Grimme S., Ehrlich S., Goerigk L., J. Comput. Chem. 2011, 32, 1456. PubMed

van Lenthe E., Baerends E. J., J. Comput. Chem. 2003, 24, 1142. PubMed

(a) Swart M., Solà M., Bickelhaupt F. M., J. Chem. Theory Comput. 2010, 6, 3145. PubMed

(b) Lynch B. J., Zhao Y., Truhlar D. G., J. Phys. Chem. A 2013, 107, 1384.

(c) Clark T., Chandrasekhar J., Spitznagel G. W., Schleyer P. V. R., J. Comput. Chem. 1983, 4, 294.

(d) Jensen F., J. Chem. Phys. 2002, 117, 9234.

(e) Bauzá A., Quiñonero D., Deyà P. M., Frontera A., J. Phys. Chem. A 2013, 117, 2651. PubMed

van Zeist W. ‐J., Yi R., Bickelhaupt F. M., Sci. China Chem. 2010, 53, 210.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Quantitative Molecular Orbital Perspective of the Chalcogen Bond

. 2021 Apr ; 10 (4) : 391-401. [epub] 20210217

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...