Novel OBP genes similar to hamster Aphrodisin in the bank vole, Myodes glareolus
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
20085627
PubMed Central
PMC2824723
DOI
10.1186/1471-2164-11-45
PII: 1471-2164-11-45
Knihovny.cz E-resources
- MeSH
- Electrophoresis, Gel, Two-Dimensional MeSH
- Arvicolinae genetics MeSH
- Pheromones genetics MeSH
- Lipocalins genetics metabolism MeSH
- Urine chemistry MeSH
- Molecular Sequence Data MeSH
- Proteins genetics MeSH
- Receptors, Odorant genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Saliva chemistry MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization MeSH
- Gene Expression Profiling MeSH
- Tandem Mass Spectrometry MeSH
- Vagina chemistry metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- aphrodisin protein, Mesocricetus auratus MeSH Browser
- Pheromones MeSH
- Lipocalins MeSH
- odorant-binding protein MeSH Browser
- Proteins MeSH
- Receptors, Odorant MeSH
BACKGROUND: Chemical communication in mammals involves globular lipocalins that protect and transport pheromones during their passage out of the body. Efficient communication via this protein - pheromone complex is essential for triggering multiple responses including aggression, mate choice, copulatory behaviour, and onset and synchronization of oestrus. The roles of lipocalins in communication were studied in many organisms and especially in mice (i.e. Mus musculus domesticus) which excrete Major Urinary Proteins (Mup) in excessive amounts in saliva and urine. Other mammals, however, often lack the genes for Mups or their expression is very low. Therefore, we aimed at characterization of candidate lipocalins in Myodes glareolus which are potentially linked to chemical communication. One of them is Aphrodisin which is a unique lipocalin that was previously described from hamster vaginal discharge and is known to carry pheromones stimulating copulatory behaviour in males. RESULTS: Here we show that Aphrodisin-like proteins exist in other species, belong to a group of Odorant Binding Proteins (Obp), and contrary to the expression of Aphrodisin only in hamster genital tract and parotid glands of females, we have detected these transcripts in both sexes of M. glareolus with the expression confirmed in various tissues including prostate, prepucial and salivary glands, liver and uterus. On the level of mRNA, we have detected three different gene variants. To assess their relevance for chemical communication we investigated the occurrence of particular proteins in saliva, urine and vaginal discharge. On the protein level we confirmed the presence of Obp2 and Obp3 in both saliva and urine. Appropriate bands in the range of 17-20 kDa from vaginal discharge were, however, beyond the MS detection limits. CONCLUSION: Our results demonstrate that three novel Obps (Obp1, Obp2, and Obp3) are predominant lipocalins in Myodes urine and saliva. On the protein level we have detected further variants and thus we assume that similarly as Major Urinary Proteins in mice, these proteins may be important in chemical communication in this Cricetid rodent.
See more in PubMed
Novotny M, Harvey S, Jemiolo B. Chemistry of male dominance in the house mouse, Mus domesticus. Experientia. 1990;46:109–113. doi: 10.1007/BF01955433. PubMed DOI
Novotny MV, Harvey S, Jemiolo B, Alberts J. Synthetic pheromones that promote inter-male aggression in mice. Proc Natl Acad Sci USA. 1985;82:2059–2061. doi: 10.1073/pnas.82.7.2059. PubMed DOI PMC
Lin DY, Zhang S-Z, Block E, Katz LC. Encoding social signals in the mouse main olfactory bulb. Nature. 2005;434:470–477. doi: 10.1038/nature03414. PubMed DOI
Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L. Identification of protein pheromones that promote aggressive behaviour. Nature. 2007;450:899–903. doi: 10.1038/nature05997. PubMed DOI
Janotová K, Stopka P. Mechanisms of chemical communication: the role of Major Urinary Proteins. Folia Zool. 2009;58(Supplement 1):41–55.
Rusu AS, Krackow S, Jedelsky PL, Stopka P, Konig B. A qualitative investigation of major urinary proteins in relation to the onset of aggressive behavior and dispersive motivation in male wild house mice (Mus musculus domesticus) Journal of Ethology. 2008;26:127–135. doi: 10.1007/s10164-007-0042-3. DOI
Stopková R, Stopka P, Janotová K, Jedelský PL. Species-specific expression of major urinary proteins in the house mice (Mus musculus musculus and Mus musculus domesticus) J Chem Ecol. 2007;33:861–869. doi: 10.1007/s10886-007-9262-9. PubMed DOI
Stopka P, Janotova K, Heyrovsky D. The advertisement role of major urinary proteins in mice. Physiology & Behavior. 2007;91:667–670. doi: 10.1016/j.physbeh.2007.03.030. PubMed DOI
Novotny MV, Ma W, Wiesler D, Zídek L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc R Soc Lond B. 1999;266:2017–2022. doi: 10.1098/rspb.1999.0880. PubMed DOI PMC
Bacchini A, Gaetani E, Cavaggioni A. Pheromone binding proteins of the mouse, Mus musculus. Experientia. 1992;48:419–421. doi: 10.1007/BF01923448. PubMed DOI
Zidek L, Stone MJ, Lato SM, Pagel MD, Miao Z, Ellington AD, Novotny MV. NMR Mapping of the Recombinant Mouse Major Urinary Protein I Binding site Occupied by the Pheromone 2-sec-Butyl-4,5-dihydrothiazole. Biochemistry. 1999;38:9850–9861. doi: 10.1021/bi990497t. PubMed DOI
Mucignat-Caretta C, Caretta A, Cavaggioni A. Acceleration of puberty onset in female mice by male urinary proteins. Journal of Physiology. 1995;486(2):517–522. PubMed PMC
Krieger J, Schmitt A, Lobel D, Gudermann T, Schultz G, Breer H, Boekhoff I. Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds. The Journal of Biological Chemistry. 1999;274(8):4655–4662. doi: 10.1074/jbc.274.8.4655. PubMed DOI
Singer AG, Clancy AN, Macrides F, Agosta WC, Bronson FH. Chemical Properties of a Female Mouse Pheromone that Stimulates Gonadotropin Secretion in Males. Biology of Reproduction. 1988;38:193–199. doi: 10.1095/biolreprod38.1.193. PubMed DOI
Logan DW, Marton TF, Stowers L. Species Specificity in Major Urinary Proteins by Parallel Evolution. PLoS ONE. 2008;3 doi: 10.1371/journal.pone.0003280. PubMed PMC
Stopková R, Hladovcová D, J K, Vyoral D, Stopka P. Multiple roles of secretory lipocalins (MUP, OBP) in mice. Folia Zool. 2009;58(Supplement 1):29–40.
Hurst JL, Payne CENc, Marie AD, Humphries RE, Robertson DHL, Cavaggioni A, Beynon RJ. Individual recognition in mice mediated by major urinary proteins. Nature. 2001;414:631–634. doi: 10.1038/414631a. PubMed DOI
Singer A, Macrides F, Clancy AN, Agosta WC. Purification and Analysis of a Proteinaceous Aphrodisiac Pheromone from Hamster Vaginal Discharge. Journal of Biological Chemistry. 1986;261:13323–13326. PubMed
Macrides F, Clancy AN, Singer AG, Agosta WC. Male hamster investigatory and copulatory responses to vaginal discharge: An attempt to impart sexual significance to an arbitrary chemosensory stimulus. Physiology & Behavior. 1984;33:627–632. doi: 10.1016/0031-9384(84)90382-2. PubMed DOI
Singer A, Macrides F. Aphrodisin: pheromone or transucer? Chemical Senses. 1990;15:199–203. doi: 10.1093/chemse/15.2.199. DOI
Briand L, Blon F, Trotier D, Pernollet J-C. Natural ligands of hamster aphrodisin. Chem Senses. 2004;29:425–430. doi: 10.1093/chemse/bjh044. PubMed DOI
Magert HJ, Hadrys T, Cieslak A, Groger A, Feller S, Forssmann WG. cDNA sequence and expression pattern of the putative pheromone carrier aphrodisin. Proc Natl Acad Sci USA. 1995;92:2091–2095. doi: 10.1073/pnas.92.6.2091. PubMed DOI PMC
Kruhoffer M, Bub A, Cieslak A, adermann K, Kunstyr I, Forssmann WG, Magert HJ. Gene expression of aphrodisin in female hamster genital tract segments. Cell Tissue Res. 1997;287:153–160. PubMed
Magert HJ, Cieslak A, Alkan O, Luscher B, Kauffels W, Forssmann WG. The Golden Hamster Aphrodisin Gene. Journal of Biological Chemistry. 1999;274:444–450. doi: 10.1074/jbc.274.1.444. PubMed DOI
Ganfornina MD, Gutierrez G, Bastiani M, Sanchez D. A Phylogenetic analysis of the Lipocalin Protein Family. MolBioEvol. 2000;17:114–126. PubMed
Sanchez D, Ganfornina MD, Gutierrez G, Marin A. Exon-Intron Structure and Evolution of the Lipocalin Gene Family. MolBioEvol. 2003;20:775–783. PubMed
Pes D, Dal Monte M, Ganni M, Pelosi P. Isolation of two odorant-binding proteins from mouse nasal tissue. Comp Biochem Physiol. 1992;103B(4):1011–1017. PubMed
Flower D. The lipocalin protein family: structure and function. Biochem J. 1996;318:1–14. PubMed PMC
Vincent F, Lobel D, Brown K, Spinelli S, Grote P, Breer H, Cambillau C, Tegoni M. Crystal Structure of Aphrodisin, a Sex Pheromone from Female Hamster. J Mol Biol. 2001;305:459–469. doi: 10.1006/jmbi.2000.4241. PubMed DOI
Thavathiru E, Jana NR, De PK. Abundant secretory lipocalins displaying male and lactation-specific expression in adult hamster submandibular gland cDNA cloning and sex hormone-regulated repression. Eur J Biochem. 1999;266:467–476. doi: 10.1046/j.1432-1327.1999.00884.x. PubMed DOI
Ranganathan V, Jana NR, De PK. Hormonal effects on hamster lacrimal gland female-specific major 20 kDa secretory protein and its immunological similarity with submandibular gland major male-specific proteins. Journal of Steroid Biochemistry and Molecular Biology. 1999;70:151–158. doi: 10.1016/S0960-0760(99)00103-X. PubMed DOI
Srikantan S, De PK. Sex differences in expression and differential regulation by androgen and estrogen of two odorant-binding tear lipocalins in lacrimal glands. General and Comparative Endocrinology. 2008;158:268–276. doi: 10.1016/j.ygcen.2008.07.019. PubMed DOI
Pevsner J, Hou V, Snowman AM, Snyder SH. Odorant-binding Protein. The Journal of Biological Chemistry. 1990;265:6118–6125. PubMed
Dal Monte M, Andreini I, Revoltella R, Pelosi P. Purification and characterization of two odorant binding proteins from nasal tissue of rabbit and pig. Comp Biochem Physiol. 1991;99B:445–451. PubMed
Lazar J, Greenwood dR, Rasmussen LEL, Prestwich GD. Molecular and Functional Characterization of an Odorant Binding Protein of the Asian Elephant, Elephas maximus: Implications for the Role of Lipocalins in Mammalian Olfaction. Biochemistry. 2002;41:11786–11794. doi: 10.1021/bi0256734. PubMed DOI
Briand L, Nespoulous C, Perez V, Remy J, Huet J, Pernollet J. Ligand-binding properties and structural characterization of a novel rat odorant-binding protein variant. Eur J Biochem. 2000;267:3079–3089. doi: 10.1046/j.1432-1033.2000.01340.x. PubMed DOI
Bignetti E, Cavaggioni A, Pelosi P, Persaud KC, Sorbi RT, Tirindelli R. Purification and characterisation of an odorant-binding protein from cow nasal tissue. Eur J Biochem. 1985;149:227–231. doi: 10.1111/j.1432-1033.1985.tb08916.x. PubMed DOI
Pes D, Pelosi P. Odorant-binding proteins of the mouse. Comp Biochem Physiol. 1995;112B:471–479. PubMed
Pevsner J, Reed RR, Feinstein P, Snyder SH. Molecular Cloning of Odorant-Binding Protein: Member of a Ligand Carrier Family. Science. 1988;241:336–339. doi: 10.1126/science.3388043. PubMed DOI
Steinbrecht RA. Odorant-Binding Proteins: Expression and Function. Annals of the New York Academy of Sciences. 1998;855:323–332. doi: 10.1111/j.1749-6632.1998.tb10591.x. PubMed DOI
Tegoni M, Pelosi P, Vincent F, Spinelli S, Campanacci V, Grolli S, Ramoni R, Cambillau C. Mammalian odorant binding proteins. Biochimica et Biophysica Acta. 2000;1482:229–240. PubMed
Vidic J, Grosclaude J, Momnnerie R, Persuy MA, Badonnel K, Baly C, Caillol M, Briand L, Salesse R, Pajot-Augy E. On a chip demonstration of a functional role for Odorant Binding Protein in the preservation of olfactory receptor activity at high odorant concentration. Lab Chip. 2008;8:678–688. doi: 10.1039/b717724k. PubMed DOI
Taylor AJ, Cook DJ, Scott DJ. Role of Odorant Binding Proteins: Comparing Hypothetical Mechamisms with Experimental Data. Chem Percept. 2008;1:153–162. doi: 10.1007/s12078-008-9016-2. DOI
Boudjelal M, Sivaprasadarao A, Findlay JBC. Membrane receptor for odour-binding proteins. Biochem J. 1996;317:23–27. PubMed PMC
Grolli S, Merli E, Conti v, Scaltriti E, Ramoni R. Odorant binding protein has the biochemical properties of a scavenger for 4-hydroxy-2-nonenal in mammalian nasal mucosa. FEBS Journal. 2006;273:5131–5514. doi: 10.1111/j.1742-4658.2006.05510.x. PubMed DOI
Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The Neutrophil Lipocalin NGAL Is a Bacteriostatic Agent that Interferes with Siderophore-Mediated Iron Acquisition. Molecular Cell. 2002;10:1033–1043. doi: 10.1016/S1097-2765(02)00708-6. PubMed DOI
Fischbach MA, Lin H, Zhou L, Yu Y, Aberge RJ, Liu DR, Raymond KN, Wanner Bl, Strong RK, Walsh CT. et al.The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. PNAS. 2006;103:16502–16507. doi: 10.1073/pnas.0604636103. PubMed DOI PMC
Smith KD. Iron metabolism at the host pathogen interface: Lipocalin 2 and the pathogen-associated iro A gene cluster. The International Journal of Biochemistry & Cell Biology. 2007;39:1776–1780. doi: 10.1016/j.biocel.2007.07.003. PubMed DOI PMC
Strong RK. In: Lipocalins. Akerstrom B, Borregaard N, Flower DR, Salier JP, editor. Georgetown, Texas: Landes bioscience; 2006. Siderocalins; pp. 83–98.
Salier J. Chromosomal location, exon/intron organization and evolution of lipocalin genes. Biochimica et Biophysica Acta. 2000;1482:25–34. PubMed
Thom MD, Hurst JL. Individual recognition by scent. Ann Zool Fennici. 2004;41:765–787.
Briand L, Huet J-C, Perez V, Lenoir G, Nespoulous C, Boucher Y, Trotier D, Pernollet J-C. Odorant and pheromone binding by aphrodisin, a hamster aphrodisiac protein. FEBS Letters. 2000;476:179–185. doi: 10.1016/S0014-5793(00)01719-1. PubMed DOI
Steppan SJ, Adkins RM, Anderson C. Phylogeny and Divergence-Date Estimates of Rapid Radiations in Muroid Rodents Based on Multiple Nuclear Genes. Syst Biol. 2004;53:533–553. doi: 10.1080/10635150490468701. PubMed DOI
Bradford MM. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical biochemistry. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Havlis J, Thomas H, Sebela M, Shevchenko A. Fast-response proteomics by accelerated in-gel digestion of proteins. Anal Chem. 2003;75(6):1300–1306. doi: 10.1021/ac026136s. PubMed DOI
Planeta J, Karásek J, Vejrosta P. Development of packed capillary columns using carbon dioxide slurries. J Sep Sci. 2003;26(6-7):525–530. doi: 10.1002/jssc.200390071. DOI
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution. 2007;24:1596–1599. doi: 10.1093/molbev/msm092. PubMed DOI
Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota
Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse
On the tear proteome of the house mouse (Mus musculus musculus) in relation to chemical signalling