Aminosulfonated Graphene as a Catalyst for Efficient Production of Biodiesel from Fatty Acids and Crude Vegetable Oils
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004587
European Regional Development Fund
CZ.10.03.01/00/22_003/0000048
Ministerstvo Životního Prostředí
101130717
HORIZON EUROPE Framework Programme
101159582
Horizon Europe project MERGE
90254
Ministry of Education, Youth and Sports
PubMed
40197703
DOI
10.1002/cssc.202402488
Knihovny.cz E-zdroje
- Klíčová slova
- biodiesel, esterification, graphene catalysts, heterogeneous acid catalysts, solid acid catalysis, transesterification,
- Publikační typ
- časopisecké články MeSH
Climate change and the depletion of fossil fuels increase the demand for sustainable energy. Biodiesel synthesized using heterogeneous acid catalysts is a promising clean-energy carrier that supports a circular carbon economy. Herein, the efficient synthesis of biodiesel is reported using a reusable solid acid graphene catalyst functionalized with a natural aminosulfonic acid. Experimental and theoretical studies reveal the key role of functionalities that simultaneously contain amino and sulfonate groups, which impart superior acidity. Excellent activity and selectivity for oleic acid conversion to oleic acid methyl esters (a sustainable biofuel) are obtained, offering a strategy for achieving improved catalytic performance compared to earlier or benchmark catalysts in the field. Notably, the catalyst also effectively converts common vegetable oils into biodiesel via transesterification and facilitates carbohydrate dehydration to value-added chemicals, demonstrating broad applicability. Two additional variants of aminosulfonic acid-functionalized graphene show similar activity, confirming the crucial role of these functionalities in achieving high acidity and catalytic performance. The development of such potent, recyclable catalysts is crucial because acid catalysis is highly versatile, underpinning many biological and synthetic transformations.
Zobrazit více v PubMed
S. J. Davis, N. S. Lewis, M. Shaner, S. Aggarwal, D. Arent, I. L. Azevedo, S. M. Benson, T. Bradley, J. Brouwer, Y.‐M. Chiang, C. T. M. Clack, A. Cohen, S. Doig, J. Edmonds, P. Fennell, C. B. Field, B. Hannegan, B.‐M. Hodge, M. I. Hoffert, E. Ingersoll, P. Jaramillo, K. S. Lackner, K. J. Mach, M. J. Ogden, P. F. Peterson, D. L. Sanchez, D. Sperling, J. Stagner, J. E. Trancik, et al. Science 2018, 360, eaas9793.
O. J. Timothy Searchinger, P. Dumas, T. Kastner, S. Wirsenius, Nature 2022, 612, 27.
National Academies of Sciences, Engineering, and Medicine, in Proc. of a Workshop–in Brief, The National Academies Press, Washington, DC 2023.
K. Kohse‐Höinghaus, P. Osswald, T. A. Cool, T. Kasper, N. Hansen, F. Qi, C. K. Westbrook, P. R. Westmoreland, Angew. Chem. Int. Edit. 2010, 49, 3572.
European Union, Off. J. Eur. Union 2018, L 328, 82.
A. F. Lee, J. A. Bennett, J. C. Manayil, K. Wilson, Chem. Soc. Rev. 2014, 43, 7887.
D. Singh, D. Sharma, S. L. Soni, S. Sharma, P. K. Sharma, A. Jhalani, Fuel 2020, 262, 116553.
Y. Guo, S. A. Delbari, A. Sabahi Namini, Q. V. Le, J. Y. Park, D. Kim, R. S. Varma, H. W. Jang, A. T‐Raissi, M. Shokouhimehr, C. Li, Mol. Catal. 2023, 547, 113362.
K. Nakajima, M. Hara, ACS Catal. 2012, 2, 1296.
P. C. Yao, H. Gong, Z. Y. Wu, H. Y. Fu, B. Li, B. Zhu, J. W. Ji, X. Y. Wang, N. Xu, C. J. Tang, H. G. Zhang, J. Zhu, Nat. Sustainability 2022, 5, 348.
C. A. Trickett, T. M. Osborn Popp, J. Su, C. Yan, J. Weisberg, A. Huq, P. Urban, J. Jiang, M. J. Kalmutzki, Q. Liu, J. Baek, M. P. Head‐Gordon, G. A. Somorjai, J. A. Reimer, O. M. Yaghi, Nat. Chem. 2019, 11, 170.
A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411.
M. Toda, A. Takagaki, M. Okamura, J. N. Kondo, S. Hayashi, K. Domen, M. Hara, Nature 2005, 438, 178.
I. Ogino, Y. Suzuki, S. R. Mukai, ACS Catal. 2015, 5, 4951.
X. Zhang, Y. Zhao, S. Xu, Y. Yang, J. Liu, Y. Wei, Q. Yang, Nat. Commun. 2014, 5, 3170.
H. F. T. Klare, M. Oestreich, J. Am. Chem. Soc. 2021, 143, 15490.
H. Xu, S. J. Zuend, M. G. Woll, Y. Tao, E. N. Jacobsen, Science 2010, 327, 986.
A. Cheruvathoor Poulose, M. Medveď, V. R. Bakuru, A. Sharma, D. Singh, S. B. Kalidindi, H. Bares, M. Otyepka, K. Jayaramulu, A. Bakandritsos, R. Zbořil, Nat. Commun. 2023, 14, 1373.
A. Bakandritsos, M. Pykal, P. Blonski, P. Jakubec, D. D. Chronopoulos, K. Polakova, V. Georgakilas, K. Cepe, O. Tomanec, V. Ranc, A. B. Bourlinos, R. Zboril, M. Otyepka, ACS Nano 2017, 11, 2982.
G. Gelbard, O. Bres, R. M. Vargas, F. Vielfaure, U. F. Schuchardt, J. Am. Oil Chem. Soc. 1995, 72, 1239.
M. H. M. Killner, Y. G. Linck, E. Danieli, J. J. R. Rohwedder, B. Blumich, Fuel 2015, 139, 240.
G. P. F. Wood, L. Radom, G. A. Petersson, E. C. Barnes, M. J. Frisch, J. A. Montgomery Jr., J. Chem. Phys. 2006, 125, 094106.
C. Copeland, O. Menon, D. Majumdar, S. Roszak, J. Leszczynski, Phys. Chem. Chem. Phys. 2017, 19, 24866.
A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
M. D. Liptak, G. C. Shields, J. Am. Chem. Soc. 2001, 123, 7314.
J. R. F. Rouquerol, K.S.W. Sing, P. Llewellyn, G. Maurin, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd ed., Elsevier, Amsterdam 2012.
M. Medveď, G. Zoppellaro, J. Ugolotti, D. Matochová, P. Lazar, T. Pospíšil, A. Bakandritsos, J. Tuček, R. Zbořil, M. Otyepka, Nanoscale 2018, 10, 4696.
D. W. Mayo, in Course Notes: Interpretation of Infrared and Raman Spectra (Eds: D. W. Mayo, F. A. Miller, R. W. Hannah), John Wiley & Sons, Inc., Hoboken, NJ 2004, pp. 101–140.
D. Zaoralova, V. Hruby, V. Sedajova, R. Mach, V. Kupka, J. Ugolotti, A. Bakandritsos, M. Medved, M. Otyepka, ACS Sustainability Chem. Eng. 2020, 8, 4764.
S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc. 2008, 130, 12787.
K. E. Whitener, R. Stine, J. T. Robinson, P. E. Sheehan, J. Phys. Chem. C 2015, 119, 10507.
M. Dubecky, E. Otyepková, P. Lazar, F. Karlicky, M. Petr, K. Cépe, P. Banás, R. Zboril, M. Otyepka, J. Phys. Chem. Lett. 2015, 6, 1430.
J. Y. Ji, G. H. Zhang, H. Y. Chen, S. L. Wang, G. L. Zhang, F. B. Zhang, X. B. Fan, Chem. Sci. 2011, 2, 484.
K. P. Flores, J. L. O. Omega, L. K. Cabatingan, A. W. Go, R. C. Agapay, Y. H. Ju, Renewable Energy 2019, 130, 510.
K. Fukuhara, K. Nakajima, M. Kitano, S. Hayashi, M. Hara, ChemCatChem 2015, 7, 3945.
L. J. Konwar, P. Mäki‐Arvela, J. P. Mikkola, Chem. Rev. 2019, 119, 11576.
K. Nakajima, M. Haraw, S. Hayashi, J. Am. Ceram. Soc. 2007, 90, 3725.
I. Noshadi, B. Kanjilal, F. J. Liu, Appl. Catal. A‐Gen. 2016, 513, 19.
Y. J. Liu, E. Lotero, J. G. Goodwin, J. Catal. 2006, 243, 221.
L. J. Konwar, J. Boro, D. Deka, Renewable Sustainable Energy Rev. 2014, 29, 546.
X. Mo, D. E. López, K. Suwannakarn, Y. Liu, E. Lotero, J. G. Goodwin, C. Q. Lu, J. Catal. 2008, 254, 332.
M. Hara, Energy Environ. Sci. 2010, 3, 601.
J. T. Yu, A. M. Dehkhoda, N. Ellis, Energy Fuel 2011, 25, 337.
Q. Q. Guan, Y. Li, Y. Chen, Y. Z. Shi, J. J. Gu, B. Li, R. R. Miao, Q. L. Chen, P. Ning, RSC Adv. 2017, 7, 7250.
D. R. Stellwagen, F. van der Klis, D. S. van Es, K. P. de Jong, J. H. Bitter, ChemSusChem 2013, 6, 1668.
M. Hara, T. Yoshida, A. Takagaki, T. Takata, J. N. Kondo, S. Hayashi, K. Domen, Angew. Chem. Int. Edit. 2004, 43, 2955.
M. Hara, Top. Catal. 2010, 53, 805.
R. A. Sheldon, Green Chem. 2014, 16, 950.
L. T. Mika, E. Cséfalvay, A. Németh, Chem. Rev. 2018, 118, 505.
R.‐J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499.
R. Mariscal, P. Maireles‐Torres, M. Ojeda, I. Sádaba, M. L. Granados, Energy Environ. Sci. 2016, 9, 1144.
S. M. Kang, J. Ye, Y. Zhang, J. Chang, RSC Adv. 2013, 3, 7360.
X. Qi, H. Guo, L. Li, R. L. Smith Jr., ChemSusChem 2012, 5, 2215.
X. Yu, L. Peng, X. Gao, L. He, K. Chen, RSC Adv. 2018, 8, 15762.
P. P. Upare, J. W. Yoon, M. Y. Kim, H. Y. Kang, D. W. Hwang, Y. K. Hwang, H. H. Kung, J. S. Chang, Green Chem. 2013, 15, 2935.
Q. D. Hou, W. Z. Li, M. T. Ju, L. Liu, Y. Chen, Q. Yang, RSC Adv. 2016, 6, 104016.
R. Liu, J. Chen, X. Huang, L. Chen, L. Ma, X. Li, Green Chem. 2013, 15, 2895.
B. Karimi, H. M. Mirzaei, H. Behzadnia, H. Vali, ACS Appl. Mater. Interfaces 2015, 7, 19050.
N. Duyckaerts, I. T. Trotus, V. Nese, A. C. Swertz, S. Auris, H. Wiggers, F. Schüth, ChemCatChem 2015, 7, 2891.
S. Verma, R. B. N. Baig, M. N. Nadagouda, C. Len, R. S. Varma, Green Chem. 2017, 19, 164.
Y. Wang, F. Delbecq, W. Kwapinski, C. Len, Mol. Catal. 2017, 438, 167.
G. G. Millán, J. Phiri, M. Mäkelä, T. Maloney, A. M. Balu, A. Pineda, J. Llorca, H. Sixta, Appl. Catal. A‐Gen. 2019, 585, 117180.
Y. Wang, T. Len, Y. Huang, A. D. Taboada, A. N. Boa, C. Ceballos, F. Delbecq, G. Mackenzie, C. Len, ACS Sustainable Chem. Eng. 2017, 5, 392.
I. Fúnez‐Núñez, C. García‐Sancho, J. A. Cecilia, R. Moreno‐Tost, E. Pérez‐Inestrosa, L. Serrano‐Cantador, P. Maireles‐Torres, Appl. Catal. A‐Gen. 2019, 585, 117188.
S. Kumar, M. B. Gawande, J. Kopp, S. Kment, R. S. Varma, R. Zbořil, ChemSusChem 2020, 13, 5231.
R. Jia, J. W. Ren, X. H. Liu, G. Z. Lu, Y. Q. Wang, J. Mater. Chem. A 2014, 2, 11195.
Y. Wang, D. Wang, M. H. Tan, B. Jiang, J. T. Zheng, N. Tsubaki, M. B. Wu, ACS Appl. Mater. Interfaces 2015, 7, 26767.
R. B. N. Baig, S. Verma, M. N. Nadagouda, R. S. Varma, Sci. Rep. 2016, 6, 39387.
Y. W. Liu, S. M. Liu, D. F. He, N. Li, Y. J. Ji, Z. P. Zheng, F. Luo, S. X. Liu, Z. Shi, C. W. Hu, J. Am. Chem. Soc. 2015, 137, 12697.
H. M. A. Hassan, M. A. Betiha, S. K. Mohamed, E. A. El‐Sharkawy, E. A. Ahmed, Appl. Surf. Sci. 2017, 412, 394.
H. L. Zhang, X. Luo, K. Q. Shi, T. Wu, F. He, S. B. Zhou, G. Z. Chen, C. Peng, ChemSusChem 2017, 10, 3352.
F. S. Liu, X. L. Ma, H. Li, Y. Y. Wang, P. Cui, M. Guo, H. L. Yaxin, W. P. Lu, S. J. Zhou, M. Z. Yu, Fuel 2020, 266, 117149.
L. Peng, A. Philippaerts, X. X. Ke, J. Van Noyen, F. De Clippel, G. Van Tendeloo, P. A. Jacobs, B. F. Sels, Catal. Today 2010, 150, 140.
L. Geng, Y. Wang, G. Yu, Y. X. Zhu, Catal. Commun. 2011, 13, 26.