Memory in Leopard Geckos (Eublepharis macularius) in a Morris Water Maze Task
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40723477
PubMed Central
PMC12291964
DOI
10.3390/ani15142014
PII: ani15142014
Knihovny.cz E-zdroje
- Klíčová slova
- Morris water maze, Squamata, cognition, memory, orientation, reptile learning, spatial navigation,
- Publikační typ
- časopisecké články MeSH
The spatial orientation of mammals and birds has been intensively studied for many years, but the cognitive mechanism of spatial orientation and memory used by squamates remains poorly understood. Our study evaluated the learning and memory abilities of leopard geckos (Eublepharis macularius) in an adapted Morris water maze. The animals learned during the training phase consisted of 20 trials. To assess long-term memory, we retested geckos twice after several months. The geckos remembered the learned information in a short re-test after two months, but after four months, they required retraining to find the platform. We hypothesise that the duration of memory corresponds with short-term changes in semi-desert environments within one season, while disruption of memory performance after a six-month gap may simulate the more extensive seasonal change in spatial relationships in their natural environment. Moreover, during the winter period, geckos exhibit low activity, which can be connected with decreased frequency of foraging trips. Therefore, the memory loss after four months may reflect the low level of memory jogging. The motivation during the experiment was the crucial parameter of learning and memory processes. In later phases, geckos were less motivated to perform the task. Finally, they relearned the spatial orientation task, but they moved more slowly as the experiment progressed.
Zobrazit více v PubMed
Burgess N., Maguire E.A., O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35:625–641. doi: 10.1016/s0896-6273(02)00830-9. PubMed DOI
Ortega Z., Mencía A., Pérez-Mellado V. Antipredatory behaviour of a mountain lizard towards the chemical cues of its predatory snakes. Behaviour. 2018;155:817–840. doi: 10.1163/1568539x-00003504. DOI
Mueller T., O’Hara R.B., Converse S.J., Urbanek R.P., Fagan W.F. Social learning of migratory performance. Science. 2013;341:999–1002. doi: 10.1126/science.1237139. PubMed DOI
Ko Y.-W., Liao C.-P., Clark R.W., Hsu J.-Y., Tseng H.-Y., Huang W.-S. Aposematic coloration of prey enhances memory retention in an agamid lizard. Anim. Behav. 2020;161:1–13. doi: 10.1016/j.anbehav.2019.12.015. DOI
Hoerner F., Rendle-Worthington J., Lawrenz A., Oerke A.K., Damerau K., Borragan Santos S., Hard T., Preisfeld G. Differences in Mother-Infant Bond and Social Behavior of African Elephant Calves Living In Situ and Ex Situ. Animals. 2023;13:3051. doi: 10.3390/ani13193051. PubMed DOI PMC
Moss C., Harvey C., Phyllis C.L. The Amboseli Elephants: A Long-Term Perspective on a Long-Lived Mammal. University of Chicago Press; Chicago, IL, USA: 2011.
Schutz G.M., Trimper S. Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2004;70:045101. doi: 10.1103/PhysRevE.70.045101. PubMed DOI
Gagliardo A., Ioale P., Savini M., Wild J.M. Having the nerve to home: Trigeminal magnetoreceptor versus olfactory mediation of homing in pigeons. J. Exp. Biol. 2006;209:2888–2892. doi: 10.1242/jeb.02313. PubMed DOI
Bingman V.P., Gagliardo A., Hough G.E., II, Ioale P., Kahn M.C., Siegel J.J. The avian hippocampus, homing in pigeons and the memory representation of large-scale space. Integr. Comp. Biol. 2005;45:555–564. doi: 10.1093/icb/45.3.555. PubMed DOI
Bednekoff P., Balda R., Kamil A., Hile A. Long-term spatial memory in four seed-caching corvid species. Anim. Behav. 1997;53:335–341.
Roth T.C., LaDage L.D., Pravosudov V.V. Learning capabilities enhanced in harsh environments: A common garden approach. Proc. Biol. Sci. 2010;277:3187–3193. doi: 10.1098/rspb.2010.0630. PubMed DOI PMC
Funahashi S. Working Memory in the Prefrontal Cortex. Brain Sci. 2017;7:49. doi: 10.3390/brainsci7050049. PubMed DOI PMC
Shimizu T., Karten H.J. Multiple Origins of Neocortex: Contributions of the Dorsal Ventricular Ridge. In: Finlay B.L., Innocenti G., Scheich H., editors. The Neocortex: Ontogeny and Phylogeny. Springer; Boston, MA, USA: 1991. pp. 75–86.
Zucker R.S., Regehr W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002;64:355–405. doi: 10.1146/annurev.physiol.64.092501.114547. PubMed DOI
Bliss T.V., Collingridge G.L. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature. 1993;361:31–39. doi: 10.1038/361031a0. PubMed DOI
Izquierdo I., Medina J.H., Vianna M.R., Izquierdo L.A., Barros D.M. Separate mechanisms for short- and long-term memory. Behav. Brain Res. 1999;103:1–11. doi: 10.1016/s0166-4328(99)00036-4. PubMed DOI
Gibbons J. Why do turtles live so long. BioScience. 1987;37:262–269. doi: 10.2307/1310589. DOI
Mendyk R.W. Life expectancy and longevity of varanid lizards (Reptilia: Squamata: Varanidae) in North American zoos. Zoo Biol. 2015;34:139–152. doi: 10.1002/zoo.21195. PubMed DOI
Frydlova P., Mrzilkova J., Seremeta M., Kremen J., Dudak J., Zemlicka J., Minnich B., Kverkova K., Nemec P., Zach P., et al. Determinate growth is predominant and likely ancestral in squamate reptiles. Proc. Biol. Sci. 2020;287:20202737. doi: 10.1098/rspb.2020.2737. PubMed DOI PMC
Powers A. Relevance of medial and dorsal cortex function to the dorsalization hypothesis. Behav. Brain Sci. 2003;26:566–567. doi: 10.1017/S0140525X03360121. DOI
Reiter S., Liaw H., Yamawaki T., Naumann R., Laurent G. On the Value of Reptilian Brains to Map the Evolution of the Hippocampal Formation. Brain Behav. Evol. 2017;90:41–52. doi: 10.1159/000478693. PubMed DOI
Matsubara S., Deeming D., Wilkinson A. Cold-blooded cognition: New directions in reptile cognition. Curr. Opin. Behav. Sci. 2017;16:126–130. doi: 10.1016/j.cobeha.2017.06.006. DOI
Roth T.C., II, Krochmal A.R., LaDage L.D. Reptilian Cognition: A More Complex Picture via Integration of Neurological Mechanisms, Behavioral Constraints, and Evolutionary Context. BioEssays. 2019;41:e1900033. doi: 10.1002/bies.201900033. PubMed DOI
Szabo B., Noble D.W.A., Whiting M.J. Learning in non-avian reptiles 40 years on: Advances and promising new directions. Biol. Rev. Camb. Philos. Soc. 2021;96:331–356. doi: 10.1111/brv.12658. PubMed DOI
Font E. Rapid learning of a spatial memory task in a lacertid lizard (Podarcis liolepis) Behav. Process. 2019;169:103963. doi: 10.1016/j.beproc.2019.103963. PubMed DOI
Noble D.W., Carazo P., Whiting M.J. Learning outdoors: Male lizards show flexible spatial learning under semi-natural conditions. Biol. Lett. 2012;8:946–948. doi: 10.1098/rsbl.2012.0813. PubMed DOI PMC
LaDage L.D., Cobb Irvin T.E., Gould V.A. Assessing Spatial Learning and Memory in Small Squamate Reptiles. J. Vis. Exp. 2017;119:55103. doi: 10.3791/55103. PubMed DOI PMC
Holtzman D.A., Harris T.W., Aranguren G., Bostock E. Spatial learning of an escape task by young corn snakes, Elaphe guttata guttata. Anim. Behav. 1999;57:51–60. doi: 10.1006/anbe.1998.0971. PubMed DOI
Stone A., Ford N., Holtzman D. Spatial learning and shelter selection by juvenile spotted pythons, Anteresia maculosus. J. Herpetol. 2000;34:575–587.
Foa A., Basaglia F., Beltrami G., Carnacina M., Moretto E., Bertolucci C. Orientation of lizards in a Morris water-maze: Roles of the sun compass and the parietal eye. J. Exp. Biol. 2009;212:2918–2924. doi: 10.1242/jeb.032987. PubMed DOI
Landová E., Chomik A., Vobrubová B., Hruška-Hášová T., Voňavková M., Frynta D., Frýdlová P. Spatial orientation of Eublepharis macularius (Reptilia: Squamata) in a Morris Water Maze task. Acta Soc. Zool. Bohem. 2023;86:97–117.
Kundey S.M.A. Use of features and geometry in leopard geckos (Eublepharis macularius) Behav. Process. 2021;188:104412. doi: 10.1016/j.beproc.2021.104412. PubMed DOI
Wilkinson A., Kuenstner K., Mueller J., Huber L. Social learning in a non-social reptile (Geochelone carbonaria) Biol. Lett. 2010;6:614–616. doi: 10.1098/rsbl.2010.0092. PubMed DOI PMC
Wilkinson A., Mueller-Paul J., Huber L. Picture-object recognition in the tortoise Chelonoidis carbonaria. Anim. Cogn. 2013;16:99–107. doi: 10.1007/s10071-012-0555-1. PubMed DOI
Wilkinson A., Glass E. Testudines Cognition. In: Vonk J., Shackelford T.K., editors. Encyclopedia of Animal Cognition and Behavior. Springer International Publishing; Cham, Switzerland: 2022. pp. 6927–6931.
López J., Rodríguez F., Gómez Y., Vargas J., Broglio C., Salas C. Place and cue learning in turtles. Anim. Learn. Behav. 2000;28:360–372.
Davis K.M., Burghardt G.M. Training and long-term memory of a novel food acquisition task in a turtle (Pseudemys nelsoni) Behav. Process. 2007;75:225–230. doi: 10.1016/j.beproc.2007.02.021. PubMed DOI
Davis K.M., Burghardt G.M. Long-term retention of visual tasks by two species of emydid turtles, Pseudemys nelsoni and Trachemys scripta. J. Comp. Psychol. 2012;126:213–223. doi: 10.1037/a0027827. PubMed DOI
da Silva R., Conde D.A., Baudisch A., Colchero F. Slow and negligible senescence among testudines challenges evolutionary theories of senescence. Science. 2022;376:1466–1470. doi: 10.1126/science.abl7811. PubMed DOI
Warner D.A., Miller D.A., Bronikowski A.M., Janzen F.J. Decades of field data reveal that turtles senesce in the wild. Proc. Natl. Acad. Sci. USA. 2016;113:6502–6507. doi: 10.1073/pnas.1600035113. PubMed DOI PMC
Soldati F., Burman O.H., John E.A., Pike T.W., Wilkinson A. Long-term memory of relative reward values. Biol. Lett. 2017;13:20160853. doi: 10.1098/rsbl.2016.0853. PubMed DOI PMC
Gutnick T., Weissenbacher A., Kuba M.J. The underestimated giants: Operant conditioning, visual discrimination and long-term memory in giant tortoises. Anim. Cogn. 2020;23:159–167. doi: 10.1007/s10071-019-01326-6. PubMed DOI
Davidson R.S., Jr. Laboratory maintenance and learning of Alligator mississippiensis. Psychol. Rep. 1966;19:595–601. doi: 10.2466/pr0.1966.19.2.595. PubMed DOI
Gossette R.L., Hombach A. Successive discrimination reversal (SDR) performances of American alligators and American crocodiles on a spatial task. Percept. Mot. Ski. 1969;28:63–67. doi: 10.2466/pms.1969.28.1.63. PubMed DOI
Day L.B., Crews D., Wilczynski W. Spatial and reversal learning in congeneric lizards with different foraging strategies. Anim. Behav. 1999;57:393–407. doi: 10.1006/anbe.1998.1007. PubMed DOI
Day L.B., Crews D., Wilczynski W. Effects of medial and dorsal cortex lesions on spatial memory in lizards. Behav. Brain Res. 2001;118:27–42. doi: 10.1016/s0166-4328(00)00308-9. PubMed DOI
Day L.B., Ismail N., Wilczynski W. Use of position and feature cues in discrimination learning by the whiptail lizard (Cnemidophorus inornatus) J. Comp. Psychol. 2003;117:440–448. doi: 10.1037/0735-7036.117.4.440. PubMed DOI
Holtzman D.A. From slither to hither: Orientation and spatial learning in snakes. Integr. Biol. 1998;1:81–89. doi: 10.1002/(SICI)1520-6602(1998)1:3<81::AID-INBI2>3.0.CO;2-V. DOI
Loop M.S. The Effect of Relative Prey Size on the Ingestion Behavior of the Bengal Monitor, Varanus bengalensis (Sauria: Varanidae) Herpetologica. 1974;30:123–127.
Cooper T., Liew A., Andrle G., Cafritz E., Dallas H., Niesen T., Slaters E., Stockert J., Vold T., Young M., et al. Latency in Problem Solving as Evidence for Learning in Varanid and Helodermatid Lizards, with Comments on Foraging Techniques. Copeia. 2019;107:78–84. doi: 10.1643/ch-18-119. DOI
Pettit L., Ward-Fear G., Shine R. Invasion of cane toads (Rhinella marina) affects the problem-solving performance of vulnerable predators (monitor lizards, Varanus varius) Behav. Ecol. Sociobiol. 2021;75:39. doi: 10.1007/s00265-021-02978-6. DOI
McLean K.E., Vickaryous M.K. A novel amniote model of epimorphic regeneration: The leopard gecko, Eublepharis macularius. BMC Dev. Biol. 2011;11:50. doi: 10.1186/1471-213X-11-50. PubMed DOI PMC
Agarwal I., Bauer A.M., Gamble T., Giri V.B., Jablonski D., Khandekar A., Mohapatra P.P., Masroor R., Mishra A., Ramakrishnan U. The evolutionary history of an accidental model organism, the leopard gecko Eublepharis macularius (Squamata: Eublepharidae) Mol. Phylogenet. Evol. 2022;168:107414. doi: 10.1016/j.ympev.2022.107414. PubMed DOI
Frynta D., Jancuchova-Laskova J., Frydlova P., Landova E. A comparative study of growth: Different body weight trajectories in three species of the genus Eublepharis and their hybrids. Sci. Rep. 2018;8:2658. doi: 10.1038/s41598-018-19864-3. PubMed DOI PMC
Jancuchova-Laskova J., Landova E., Frynta D. Experimental Crossing of Two Distinct Species of Leopard Geckos, Eublepharis angramainyu and E. macularius: Viability, Fertility and Phenotypic Variation of the Hybrids. PLoS ONE. 2015;10:e0143630. doi: 10.1371/journal.pone.0143630. PubMed DOI PMC
Crews D., Coomber P., Gonzalez-Lima F. Effects of age and sociosexual experience on the morphology and metabolic capacity of brain nuclei in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination. Brain Res. 1997;758:169–179. doi: 10.1016/s0006-8993(97)00222-9. PubMed DOI
Sakata J.T., Coomber P., Gonzalez-Lima F., Crews D. Functional connectivity among limbic brain areas: Differential effects of incubation temperature and gonadal sex in the leopard gecko, Eublepharis macularius. Brain Behav. Evol. 2000;55:139–151. doi: 10.1159/000006648. PubMed DOI
Kutilek P., Socha V., Schlenker J., Skoda D., Hybl J., Frynta D., Landova E., Haskova T., Cerny R., Kurali A. System for measuring movement response of small animals to changes in their orientation; Proceedings of the International Conference on Applied Electronics (AE); Pilsen, Czech Republic. 8–9 September 2015; pp. 139–144.
Seufer H., Kaverkin Y., Kirschner A. The Eyelash Geckos: Care, Breeding and Natural History. Kirschner & Seufer Verlag; Karlsruhe, Germany: 2005. p. 238.
Bauer A.M., Masroor R., Titus-McQuillan J., Heinicke M.P., Daza J.D., Jackman T.R. A preliminary phylogeny of the Palearctic naked-toed geckos (Reptilia: Squamata: Gekkonidae) with taxonomic implications. Zootaxa. 2013;3599:301–324. doi: 10.11646/zootaxa.3599.4.1. PubMed DOI
de Magalhaes J., Abidi Z., dos Santos G., Avelar R., Barardo D., Chatsirisupachai K., Clark P., De-Souza E., Johnson E., Lopes I., et al. Human Ageing Genomic Resources: Updates on key databases in ageing research. Nucleic Acids Res. 2023;52:D900–D908. doi: 10.1093/nar/gkad927. PubMed DOI PMC
Landová E., Hnidová P., Chomik A., Jančúchová-Lásková J., Frýdlová P., Frynta D. Specific Antipredator Response of Leopard Geckos (Eublepharis macularius) to the Smell of Snake Exuvia. In: Schaal B., Rekow D., Keller M., Damon F., editors. Chemical Signals in Vertebrates. Volume 15. Springer International Publishing; Cham, Switzerland: 2021. pp. 399–418.
Szabo B., Ringler E. Geckos differentiate self from other using both skin and faecal chemicals: Evidence towards self-recognition? Anim. Cogn. 2023;26:1011–1019. doi: 10.1007/s10071-023-01751-8. PubMed DOI PMC
Krochmal A., Roth T., Simmons N. My way is the highway: The role of plasticity in learning complex migration routes. Anim. Behav. 2021;174:161–167. doi: 10.1016/j.anbehav.2021.02.005. DOI
Roth T., Krochmal A. Pharmacological evidence is consistent with a prominent role of spatial memory in complex navigation. Proc. R. Soc. B Biol. Sci. 2016;283:20152548. doi: 10.1098/rspb.2015.2548. PubMed DOI PMC
Krochmal A., Roth T.I., Simmons N. Cue relevance during navigation is a function of scale and experience. Anim. Behav. 2025;225:123225. doi: 10.1016/j.anbehav.2025.123225. DOI
Viets B.E., Tousignant A., Ewert M.A., Nelson C.E., Crews D. Temperature-dependent sex determination in the leopard gecko, Eublepharis macularius. J. Exp. Zool. 1993;265:679–683. doi: 10.1002/jez.1402650610. PubMed DOI
Flores D., Tousignant A., Crews D. Incubation temperature affects the behavior of adult leopard geckos (Eublepharis macularius) Physiol. Behav. 1994;55:1067–1072. doi: 10.1016/0031-9384(94)90389-1. PubMed DOI
Sakata J., Crews D. Embryonic temperature shapes behavioural change following social experience in male leopard geckos, Eublepharis macularius. Anim. Behav. 2003;66:839–846. doi: 10.1006/anbe.2003.2294. DOI
Bull J. Temperature-dependent sex determination in reptiles-validity of sex diagnosis in hatchling lizards. Can. J. Zool. 1987;65:1421–1424. doi: 10.1139/z87-224. DOI
Bragg W., Fawcett J., Bragg T., Viets B. Nest-site selection in two eublepharid gecko species with temperature-dependent sex determination and one with genotypic sex determination. Biol. J. Linn. Soc. 2000;69:319–332. doi: 10.1111/j.1095-8312.2000.tb01208.x. DOI
Bonine K., Garland T. Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. J. Zool. 1999;248:255–265.
Paulissen M. Spatial learning in the little brown skink, Scincella lateralis: The importance of experience. Anim. Behav. 2008;76:135–141. doi: 10.1016/j.anbehav.2007.12.017. DOI
Landová E., Jancúchová-Lásková J., Musilová V., Kadochová S., Frynta D. Ontogenetic switch between alternative antipredatory strategies in the leopard gecko (Eublepharis macularius): Defensive threat versus escape. Behav. Ecol. Sociobiol. 2013;67:1113–1122. doi: 10.1007/s00265-013-1536-3. DOI
Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods. 1984;11:47–60. doi: 10.1016/0165-0270(84)90007-4. PubMed DOI
Vorhees C., Williams M. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006;1:848–858. doi: 10.1038/nprot.2006.116. PubMed DOI PMC
Technology N.I. EthoVision XT. Noldus Information Technology; Wageningen, The Netherlands: 2011. version XT 11.5.
Pinheiro J., Bates D., Debroy S., Sarkar D., R Core Team . R Package. R Foundation for Statistical Computing; Vienna, Austria: 2015. [(accessed on 11 November 2024)]. version 3.1-121. nlme: Linear and Nonlinear Mixed Effects Models. Available online: https://cran.r-project.org/web/packages/nlme/index.html.
Lenth R. R Package. R Foundation for Statistical Computing; Vienna, Austria: 2024. [(accessed on 11 November 2024)]. version 1.10.3. emmeans: Estimated Marginal Means, aka Least-Squares Means. Available online: https://rvlenth.github.io/emmeans/
R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 11 November 2024)]. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/
Bezzina C.N., Amiel J.J., Shine R. Does invasion success reflect superior cognitive ability? A case study of two congeneric lizard species (Lampropholis, Scincidae) PLoS ONE. 2014;9:e86271. doi: 10.1371/journal.pone.0086271. PubMed DOI PMC
Lensink J., Veissier I., Boissy A. Enhancement of performances in a learning task in suckler calves after weaning and relocation: Motivational versus cognitive control? A pilot. Appl. Anim. Behav. Sci. 2006;100:171–181. doi: 10.1016/j.applanim.2005.11.021. DOI
Khan M.S. Natural History and Biology of Hobbyist Choice Leopard Gecko Eublepharis macularius. Talim ul Islam College; Rabwa, Pakistan: 2009. pp. 1–19.
Hussain M.S., Lee S.H. A classification of rainfall regions in Pakistan. J. Korean Geogr. Soc. 2009;44:605–623.
Cooper T.L., Zabinski C.L., Adams E.J., Berry S.M., Pardo-Sanchez J., Reinhardt E.M., Roberts K.M., Watzek J., Brosnan S.F., Hill R.L., et al. Long-term Memory of a Complex Foraging Task in Monitor Lizards (Reptilia: Squamata: Varanidae) J. Herpetol. 2020;54:378–383. doi: 10.1670/19-122. DOI
Kverkova K., Marhounova L., Polonyiova A., Kocourek M., Zhang Y., Olkowicz S., Strakova B., Pavelkova Z., Vodicka R., Frynta D., et al. The evolution of brain neuron numbers in amniotes. Proc. Natl. Acad. Sci. USA. 2022;119:e2121624119. doi: 10.1073/pnas.2121624119. PubMed DOI PMC
Castanet J. Age estimation and longevity in reptiles. Gerontology. 1994;40:174–192. doi: 10.1159/000213586. PubMed DOI
Bowen B., Avise J., Richardson J., Meylan A., Margaritoulis D., Hopkinsmurphy S. Population structure of the loggerhead turtle Caretta caretta in the northwest Atlantic Ocean and Mediterranean Sea. Conserv. Biol. 1993;7:834–844. doi: 10.1046/j.1523-1739.1993.740834.x. DOI
Lohmann K.J., Lohmann C.M.F. Orientation and Open-Sea Navigation in Sea Turtles. J. Exp. Biol. 1996;199:73–81. doi: 10.1242/jeb.199.1.73. PubMed DOI
Goff M., Salmon M., Lohmann K. Hatchling sea turtles use surface waves to establish a magnetic compass direction. Anim. Behav. 1998;55:69–77. doi: 10.1006/anbe.1997.0577. PubMed DOI
Lohmann K.J., Lohmann C.M.F., Brothers J.R., Putman N.F. Natal Homing and Imprinting in Sea Turtles. In: Wyneken K., Lohmann K.J., Musick J.A., editors. The Biology of Sea Turtles. Volume III. CRC Press; Boca Raton, FL, USA: 2013. pp. 59–78.
Booth D.T. Influence of incubation temperature on hatchling phenotype in reptiles. Physiol. Biochem. Zool. 2006;79:274–281. doi: 10.1086/499988. PubMed DOI
Abayarathna T., Webb J.K. Effects of incubation temperatures on learning abilities of hatchling velvet geckos. Anim. Cogn. 2020;23:613–620. doi: 10.1007/s10071-020-01365-4. PubMed DOI
Trnik M., Albrechtova J., Kratochvil L. Persistent effect of incubation temperature on stress-induced behavior in the Yucatan banded gecko (Coleonyx elegans) J. Comp. Psychol. 2011;125:22–30. doi: 10.1037/a0021186. PubMed DOI
Dayananda B., Penfold S., Webb J. The effects of incubation temperature on locomotor performance, growth and survival in hatchling velvet geckos. J. Zool. 2017;303:46–53. doi: 10.1111/jzo.12460. DOI
Amiel J.J., Shine R. Hotter nests produce smarter young lizards. Biol. Lett. 2012;8:372–374. doi: 10.1098/rsbl.2011.1161. PubMed DOI PMC
Amiel J.J., Lindstrom T., Shine R. Egg incubation effects generate positive correlations between size, speed and learning ability in young lizards. Anim. Cogn. 2014;17:337–347. doi: 10.1007/s10071-013-0665-4. PubMed DOI
Amiel J.J., Bao S., Shine R. The effects of incubation temperature on the development of the cortical forebrain in a lizard. Anim. Cogn. 2017;20:117–125. doi: 10.1007/s10071-016-0993-2. PubMed DOI
Ladage L.D., Roth T.C., Cerjanic A.M., Sinervo B., Pravosudov V.V. Spatial memory: Are lizards really deficient? Biol. Lett. 2012;8:939–941. doi: 10.1098/rsbl.2012.0527. PubMed DOI PMC