Determinate growth is predominant and likely ancestral in squamate reptiles

. 2020 Dec 23 ; 287 (1941) : 20202737. [epub] 20201223

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33352069

Body growth is typically thought to be indeterminate in ectothermic vertebrates. Indeed, until recently, this growth pattern was considered to be ubiquitous in ectotherms. Our recent observations of a complete growth plate cartilage (GPC) resorption, a reliable indicator of arrested skeletal growth, in many species of lizards clearly reject the ubiquity of indeterminate growth in reptiles and raise the question about the ancestral state of the growth pattern. Using X-ray micro-computed tomography (µCT), here we examined GPCs of long bones in three basally branching clades of squamate reptiles, namely in Gekkota, Scincoidea and Lacertoidea. A complete loss of GPC, indicating skeletal growth arrest, was the predominant finding. Using a dataset of 164 species representing all major clades of lizards and the tuataras, we traced the evolution of determinate growth on the phylogenetic tree of Lepidosauria. The reconstruction of character states suggests that determinate growth is ancestral for the squamate reptiles (Squamata) and remains common in the majority of lizard lineages, while extended (potentially indeterminate) adult growth evolved several times within squamates. Although traditionally associated with endotherms, determinate growth is coupled with ectothermy in this lineage. These findings combined with existing literature suggest that determinate growth predominates in both extant and extinct amniotes.

Zobrazit více v PubMed

Lincoln RJ, Boxhall GA, Clark PF. 1982. A dictionary of ecology, evolution and systematics. Cambridge, UK: Cambridge University Press.

Sebens KP. 1987. The ecology of indeterminate growth in animals. Annu. Rev. Ecol. Syst. 18, 371–407.

Karkach AS. 2006. Trajectories and models of individual growth. Demogr. Res. 15, 348–400.

Haines RW. 1942. The evolution of epiphysis and of endochondral bone. Biol. Rev. 17, 267–292.

Carter DR, Mikic B, Padian K. 1998. Epigenetic mechanical factors in the evolution of long bone epiphyses. Zool. J. Linn. Soc. 123, 163–178. (10.1111/j.1096-3642.1998.tb01298.x) DOI

Heck CT, Varricchio DJ, Gaudin TJ, Woodward HN, Horner JR. 2019. Ontogenetic changes in the long bone microstructure in the nine-banded armadillo (Dasypus novemcinctus). PLoS ONE 14, e0215655 (10.1371/journal.pone.0215655) PubMed DOI PMC

Haines RW. 1969. Epiphyses and sesamoids. In Biology of the reptilia (ed Gans C.), pp. 81–115. New York: NY: Academic Press.

Kozlowski J. 1996. Optimal allocation of resources explains interspecific life-history patterns in animals with indeterminate growth. Proc. R. Soc. B 263, 559–566. (10.1098/rspb.1996.0084) DOI

Stamps JA, Mangel M, Phillips JA. 1998. A new look at relationships between size at maturity and asymptotic size. Am. Nat. 152, 470–479. (10.1086/286183) PubMed DOI

Sirbulescu RF, Ilies I, Meyer A, Zupanc GKH. 2017. Additive neurogenesis supported by multiple stem cell populations mediates adult spinal cord development: a spatiotemporal statistical mapping analysis in a teleost model of indeterminate growth. Dev. Neurobiol. 77, 1269–1307. (10.1002/dneu.22511) PubMed DOI

Charnov EL, Turner TF, Winemiller KO. 2001. Reproductive constraints and the evolution of life histories with indeterminate growth. Proc. Natl Acad. Sci. USA 98, 9460–9464. (10.1073/pnas.161294498) PubMed DOI PMC

Hall BK. 2005. Bones and cartilage: developmental and evolutionary skeletal biology. San Diego, CA: Elsevier Academic Press.

Calsbeek R, Irschick DJ. 2007. The quick and the dead: correlational selection on morphology, performance, and habitat use in island lizards. Evolution 61, 2493–2503. (10.1111/j.1558-5646.2007.00206.x) PubMed DOI

Charnov EL, Warne R. 2011. Average adult size in female lizards. Evol. Ecol. Res. 13, 753–757.

Bajer K, Horvath G, Molnar O, Torok J, Garamszegi LZ, Herczeg G. 2015. European green lizard (Lacerta viridis) personalities: linking behavioural types to ecologically relevant traits at different ontogenetic stages. Behav. Process. 111, 67–74. (10.1016/j.beproc.2014.11.020) PubMed DOI

Hariharan IK, Wake DB, Wake MH. 2016. Indeterminate growth: could it represent the ancestral condition? CSH Perspect. Biol. 8, a019174 (10.1101/cshperspect.a019174) PubMed DOI PMC

Ortega J, Lopez P, Martin J. 2017. Environmental drivers of growth rates in Guadarrama wall lizards: a reciprocal transplant experiment. Biol. J. Linn. Soc. 122, 340–350. (10.1093/biolinnean/blx068) DOI

Tsuboi M, et al. 2018. Breakdown of brain–body allometry and the encephalization of birds and mammals. Nat. Ecol. Evol. 2, 1492–1500. (10.1038/s41559-018-0632-1) PubMed DOI

Werner J, Sfakianakis N, Rendall AD, Griebeler EM. 2018. Energy intake functions and energy budgets of ectotherms and endotherms derived from their ontogenetic growth in body mass and timing of sexual maturation. J. Theor. Biol. 444, 83–92. (10.1016/j.jtbi.2018.02.007) PubMed DOI

Beser N, Ilgaz C, Kumlutas Y, Candan K, Guclu O, Uzum N. 2020. Age and growth in two populations of Danford's lizard, Anatololacerta danfordi (Gunther, 1876), from the eastern Mediterranean. Turk. J. Zool. 44, 173–180. (10.3906/zoo-1909-39) DOI

Quesnel L, King WJ, Coulson G, Festa-Bianchet M. 2018. Tall young females get ahead: size-specific fecundity in wild kangaroos suggests a steep trade-off with growth. Oecologia 186, 59–71. (10.1007/s00442-017-4003-4) PubMed DOI

Andrews AH, DeMartini EE, Brodziak J, Nichols RS, Humphreys RL. 2012. A long-lived life history for a tropical, deepwater snapper (Pristipomoides filamentosus): bomb radiocarbon and lead–radium dating as extensions of daily increment analyses in otoliths. Can. J. Fish. Aquat. Sci. 69, 1850–1869. (10.1139/f2012-109) DOI

Campana SE, Valentin AE, MacLellan SE, Groot JB. 2016. Image-enhanced burnt otoliths, bomb radiocarbon and the growth dynamics of redfish (Sebastes mentella and S. fasciatus) off the eastern coast of Canada. Mar. Freshwater Res. 67, 925–936. (10.1071/mf15002) DOI

Castanet J, Newman DG, Saintgirons H. 1988. Skeletochronilogical data on the growth, age, and population-structure of the tuatara, Sphenodon punctatus, on Stephens Island and Lady-Alice island, New Zealand. Herpetologica 44, 25–37.

Congdon JD, Nagle RD, Kinney OM, Sels RCV. 2001. Hypotheses of aging in a long-lived vertebrate, Blanding's turtle (Emydoidea blandingii). Exp. Gerontol. 36, 813–827. (10.1016/s0531-5565(00)00242-4) PubMed DOI

De Buffrenil V, Ineich I, Bohme W. 2005. Comparative data on epiphyseal development in the family Varanidae. J. Herpetol. 39, 328–335. (10.1670/0022-1511(2005)039[0328:cdoedi]2.0.co;2) DOI

Woodward HN, Horner JR, Farlow JO. 2011. Osteohistological evidence for determinate growth in the American alligator. J. Herpetol. 45, 339–342.

Hugi J, Sanchez-Villagra MR. 2012. Life history and skeletal adaptations in the Galapagos Marine Iguana (Amblyrhynchus cristatus) as reconstructed with bone histological data-a comparative study of Iguanines. J. Herpetol. 46, 312–324. (10.1670/11-071) DOI

O'Meara RN, Asher RJ. 2016. The evolution of growth patterns in mammalian versus nonmammalian cynodonts. Paleobiology 42, 439–464. (10.1017/pab.2015.51) DOI

Frydlova P, Nutilova V, Dudak J, Zemlicka J, Nemec P, Velensky P, Jirasek T, Frynta D. 2017. Patterns of growth in monitor lizards (Varanidae) as revealed by computed tomography of femoral growth plates. Zoomorphology 136, 95–106. (10.1007/s00435-016-0338-3) DOI

Frydlova P, et al. 2019. Universality of indeterminate growth in lizards rejected: the micro-CT reveals contrasting timing of growth cartilage persistence in iguanas, agamas, and chameleons. Sci. Rep. 9, 1–14. (10.1038/s41598-019-54573-5) PubMed DOI PMC

Stark G, Tamar K, Itescu Y, Feldman A, Meiri S. 2018. Cold and isolated ectotherms: drivers of reptilian longevity. Biol. J. Linn. Soc. 125, 730–740. (10.1093/biolinnean/bly153) DOI

Shine R, Charnov EL. 1992. Patterns of survival, growth, and maturation in snakes and lizards. Am. Nat. 139, 1257–1269. (10.1086/285385) DOI

Caley MJ, Schwarzkopf L. 2004. Complex growth rate evolution in a latitudinally widespread species. Evolution 58, 862–869. PubMed

Fornasiero S, Bonnet X, Dendi F, Zuffi MAL. 2016. Growth, longevity and age at maturity in the European whip snakes, Hierophis viridiflavus and H. carbonarius. Acta Herpetol. 11, 135–149. (10.13128/Acta_Herpetol-18695) DOI

Zuniga-Vega JJ, Rojas-Gonzalez R, Lemos-Espinal JA, Perez-Trejo ME. 2005. Growth ecology of the lizard Xenosaurus grandis in Veracruz, Mexico. J. Herpetol. 39, 433–443. (10.1670/202-04a.1) DOI

Wilkinson PM, Rainwater TR, Woodward AR, Leone EH, Carter C. 2016. Determinate growth and reproductive lifespan in the American Alligator (Alligator mississippiensis): evidence from long-term recaptures. Copeia 104, 843–852. (10.1643/ch-16-430) DOI

Omeyer LCM, Fuller WJ, Godley BJ, Snape RTE, Broderick AC. 2018. Determinate or indeterminate growth? Revisiting the growth strategy of sea turtles. Mar. Ecol. Prog. Ser. 596, 199–211. (10.3354/meps12570) DOI

Hernandez-Salinas U, Ramirez-Bautista A, Cruz-Elizalde R, Meiri S, Berriozabal-Islas C. 2019. Ecology of the growth of Anolis nebulosus (Squamata: Dactyloidae) in a seasonal tropical environment in the Chamela region, Jalisco, Mexico. Ecol. Evol. 9, 2061–2071. (10.1002/ece3.4899) PubMed DOI PMC

Kubicka L, Kratochvil L. 2009. First grow, then breed and finally get fat: hierarchical allocation to life-history traits in a lizard with invariant clutch size. Funct. Ecol. 23, 595–601. (10.1111/j.1365-2435.2008.01518.x) DOI

Frynta D, Jancuchova-Laskova J, Frydlova P, Landova E. 2018. A comparative study of growth: different body weight trajectories in three species of the genus Eublepharis and their hybrids. Sci. Rep. 8, 1–11. (10.1038/s41598-018-19864-3) PubMed DOI PMC

Ornitz DM, Marie PJ. 2002. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 16, 1446–1465. (10.1101/gad.990702) PubMed DOI

Guillot GM, Burr DB. 2012. Almost invisible, often ignored: periosteum, the living lace of bone. Medicographia 34, 221–227.

Hunziker EB. 1994. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc. Res. Tech. 28, 505–519. (10.1002/jemt.1070280606) PubMed DOI

Kronenberg HM. 2003. Developmental regulation of the growth plate. Nature 423, 332–336. (10.1038/nature01657) PubMed DOI

van der Eerden BCJ, Karperien M, Wit JM. 2003. Systemic and local regulation of the growth plate. Endocr. Rev. 24, 782–801. (10.1210/er.2002-0033) PubMed DOI

White A, Wallis G. 2001. Endochondral ossification: a delicate balance between growth and mineralisation. Curr. Biol. 11, R589–R591. (10.1016/s0960-9822(01)00359-1) PubMed DOI

Calderon T, DeMiguel D, Arnold W, Stalder G, Kohler M. 2019. Calibration of life history traits with epiphyseal closure, dental eruption and bone histology in captive and wild red deer. J. Anat. 235, 205–216. (10.1111/joa.13016) PubMed DOI PMC

Kolarov NT, Ljubisavljevic K, Polovic L, Dzukic G, Kalezic ML. 2010. The body size, age structure and growth patter of the endemic balkan Mosor rock lizard (Dinarolacerta mosorensis Kolombatovic, 1886). Acta Zool. Acad. Sci. Hung. 56, 55–71.

Klein N, Scheyer T, Tuetken T. 2009. Skeletochronology and isotopic analysis of a captive individual of Alligator mississippiensis Daudin, 1802. Fos. Rec. 12, 121–131. (10.1002/mmng.200900002) DOI

Botha AE, Botha J. 2019. Ontogenetic and inter-elemental osteohistological variability in the leopard tortoise Stigmochelys pardalis. PeerJ 7, e8030 (10.7717/peerj.8030) PubMed DOI PMC

de Ricqlès AJ, Padian K, Horner JR. 2003. On the bone histology of some Triassic pseudosuchian archosaurs and related taxa. Ann. Paleontol. 89, 67–101.

Padian K, Horner JR, De Ricqles A. 2004. Growth in small dinosaurs and pterosaurs: the evolution of archosaurian growth strategies. J. Vert. Paleontol. 24, 555–571. (10.1671/0272-4634(2004)024[0555:gisdap]2.0.co;2) DOI

Steel L. 2008. The palaeohistology of pterosaur bone: an overview. Zitteliana 28, 109–125.

Erickson GM, Makovicky PJ, Currie PJ, Norell MA, Yerby SA, Brochu CA. 2004. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430, 772–775. (10.1038/nature02699) PubMed DOI

Lee AH, O'Connor PM. 2013. Bone histology confirms determinate growth and small body size in the noasaurid theropod Masiakasaurus knopfleri. J. Vert. Paleontol. 33, 865–876. (10.1080/02724634.2013.743898) DOI

Ponton F, Elzanowski A, Castanet J, Chinsamy A, de Margerie E, de Ricqles A, Cubo J. 2004. Variation of the outer circumferential layer in the limb bones of birds. Acta Ornithol. 39, 137–140. (10.3161/068.039.0210) DOI

Turvey ST, Green OR, Holdaway RN. 2005. Cortical growth marks reveal extended juvenile development in New Zealand moa. Nature 435, 940–943. (10.1038/nature03635) PubMed DOI

Dudak J, Zemlicka J, Krejci F, Polansky S, Jakubek J, Mrzilkova J, Patzelt M, Trnka J. 2015. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology. Nucl. Instrum. Meth. A 773, 81–86. (10.1016/j.nima.2014.10.076) DOI

Dudak J, Karch J, Holcova K, Zemlicka J. 2017. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix. J. Instrum. 12, C12024 (10.1088/1748-0221/12/12/c12024) DOI

Beaulieu JM, O'Meara BC. 2016. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601. (10.1093/sysbio/syw022) PubMed DOI

Louca S, Doebeli M. 2018. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055. (10.1093/bioinformatics/btx701) PubMed DOI

Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. (10.1111/j.2041-210X.2011.00169.x) DOI

Dawbin WH. 1982. The tuatara Sphenodon punctatus: aspects of life history, growth and longevity. NZ Wildlife Service, Department of Internal Affairs.

Thompson MB, Daugherty CH, Cree A, French DC, Gillingham JC, Barwick RE. 1992. Status and longevity of the tuatara, Sphenodon guntheri, and Duvaucel gecko, Hoplodactylus duvaucelii, on North Brother Island. New Zealand. J. R. Soc. New Zeal. 22, 123–130. (10.1080/03036758.1992.10420810) DOI

Meter B, Starostova Z, Kubicka L, Kratochvil L. 2020. The limits of the energetical perspective: life-history decisions in lizard growth. Evol. Ecol. 34, 469–481. (10.1007/s10682-020-10054-0) DOI

Kumas M, Ayaz D. 2014. Age determination and long bone histology in Stellagama stellio (Linnaeus, 1758) (Squamata: Sauria: Agamidae) populations in Turkey. Vertebr. Zool. 64, 113–126.

Frynta D, Frydlova P, Hnizdo J, Simkova O, Cikanova V, Velensky P. 2010. Ontogeny of sexual size dimorphism in monitor lizards: males grow for a longer period, but not at a faster rate. Zool. Sci. 27, 917–923. (10.2108/zsj.27.917) PubMed DOI

Bjorndal KA, Parsons J, Mustin W, Bolten AB. 2013. Threshold to maturity in a long-lived reptile: interactions of age, size, and growth. Mar. Biol. 160, 607–616. (10.1007/s00227-012-2116-1) DOI

Lui JCK, Andrade AC, Forcinito P, Hegde A, Chen WP, Baron J, Nilsson O. 2010. Spatial and temporal regulation of gene expression in the mammalian growth plate. Bone 46, 1380–1390. (10.1016/j.bone.2010.01.373) PubMed DOI PMC

Moncayo-Donoso M, Guevara JM, Marquez-Florez K, Fontanilla MR, Barrera LA, Garzon-Alvarado DA. 2019. Morphological changes of physeal cartilage and secondary ossification centres in the developing femur of the house mouse (Mus musculus): a micro-CT based study. Anat. Histol. Embryol. 48, 117–124. (10.1111/ahe.12417) PubMed DOI

Newton PT, et al. 2019. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature 567, 234–238. (10.1038/s41586-019-0989-6) PubMed DOI

Tureček A. 2017. The effect of steroid hormones on sexually dimorphic bone growth in geckos. Prague, Czech Republic: Charles University.

Petermann H, Koch NM, Gauthier JA. 2017. Osteohistology and sequence of suture fusion reveal complex environmentally influenced growth in the teiid lizard Aspidoscelis tigris—implications for fossil squamates. Palaeogeogr. Palaeocl. 475, 12–22. (10.1016/j.palaeo.2017.02.034) DOI

Church LE, Johnson LC. 1964. Growth of long bones in the chicken. Rates of growth in length and diameter of the humerus, tibia, and metatarsus. Am. J. Anat. 114, 521–538. (10.1002/aja.1001140310) PubMed DOI

Kirchner S. 1992. Radiological monitoring of the ossification of the skeleton of young racing pigeons. Proc. 1992 Ann. Conf. Assoc. of Avian Veterinarians, New Orleans, Louisiana, 1–5 September, pp. 359–365. Lake Worth, FL: The Association.

Naldo JL, Bailey TA, Samour JH. 2000. Radiographic analysis of the growth rate of long bones in bustards. Res. Vet. Sci. 69, 233–240. (10.1053/rvsc.2000.0416) PubMed DOI

Klein N, Sander M. 2008. Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology 34, 247–263. (10.1666/0094-8373(2008)034[0247:ositlb]2.0.co;2) DOI

de Andrade R, Sayao JM. 2014. Paleohistology and lifestyle inferences of a dyrosaurid (Archosauria: Crocodylomorpha) from Paraiba Basin (Northeastern Brazil). PLoS ONE 9, e102189 (10.1371/journal.pone.0102189) PubMed DOI PMC

Congdon JD, Nagle RD, Kinney OM, Sels RCV. 2003. Testing hypotheses of aging in long-lived painted turtles (Chrysemys picta). Exp. Gerontol. 38, 765–772. (10.1016/s0531-5565(03)00106-2) PubMed DOI

Klein N, Neenan JM, Scheyer TM, Griebeler EM. 2015. Growth patterns and life-history strategies in Placodontia (Diapsida: Sauropterygia). R. Soc. Open Sci. 2, 140440 (10.1098/rsos.140440) PubMed DOI PMC

Werning SA. 2013. Evolution of bone histological characters in amniotes, and the implications for the evolution of growth and metabolism. Berkeley, CA: University of California.

Paradis E, Wang XM, Guedon G, Croset H. 1998. Body mass dynamics in the Mediterranean pine vole Microtus duodecimcostatus. J. Zool. 245, 299–305. (10.1111/j.1469-7998.1998.tb00105.x) DOI

Smith T, Domingue JD, Paschal JC, Franke DE, Bidner TD, Whipple G. 2007. Genetic parameters for growth and carcass traits of Brahman steers. J. Anim. Sci. 85, 1377–1384. (10.2527/jas.2006-653) PubMed DOI

Mumby HS, Chapman SN, Crawley JAH, Mar KU, Htut W, Soe AT, Aung HH, Lummaa V. 2015. Distinguishing between determinate and indeterminate growth in a long-lived mammal. BMC Evol. Biol. 15, 214 (10.1186/s12862-015-0487-x) PubMed DOI PMC

Castanet J, Croci S, Aujard F, Perret M, Cubo J, de Margerie E. 2004. Lines of arrested growth in bone and age estimation in a small primate: Microcebus murinus. J. Zool. 263, 31–39. (10.1017/s0952836904004844) DOI

Sanchez-Villagra MR. 2010. Developmental palaeontology in synapsids: the fossil record of ontogeny in mammals and their closest relatives. Proc. R. Soc. B 277, 1139–1147. (10.1098/rspb.2009.2005) PubMed DOI PMC

Huttenlocker AK, Mazierski D, Reisz RR. 2011. Comparative osteohistology of hyperelongate neural spines in the Edaphosauridae (Amniota: Synapsida). Palaeontology 54, 573–590. (10.1111/j.1475-4983.2011.01047.x) DOI

Shelton CD, Sander PM, Stein K, Winkelhorst H. 2012. Long bone histology indicates sympatric species of Dimetrodon (Lower Permian, Sphenacodontidae). Earth Envviron. Sci. Trans. R. Soc. Edinburg 103, 217–236. (10.1017/s175569101300025x) DOI

Laurin M, de Buffrenil V. 2016. Microstructural features of the femur in early ophiacodontids: a reappraisal of ancestral habitat use and lifestyle of amniotes. C.R. Palevol. 15, 115–127. (10.1016/j.crpv.2015.01.001) DOI

Shelton CD, Sander PM. 2017. Long bone histology of Ophiacodon reveals the geologically earliest occurrence of fibrolamellar bone in the mammalian stem lineage. C.R. Palevol. 16, 397–424. (10.1016/j.crpv.2017.02.002) DOI

Shelton CD. 2014. Origins of endothermy in the mammalian lineage the evolutionary beginning of fibro-lamellar bone in the ‘mammal-like’ reptiles. Bonn, Germany: Rheinischen Friedrich-Wilhelms-Universität.

Huttenlocker AK, Shelton CD. 2020. Bone histology of varanopids (Synapsida) from Richards Spur, Oklahoma, sheds light on growth patterns and lifestyle in early terrestrial colonizers. Phil. Trans. R. Soc. B 375, 20190142 (10.1098/rstb.2019.0142) PubMed DOI PMC

Hillenius WJ, Ruben JA. 2004. The evolution of endothermy in terrestrial vertebrates: who? when? why? Physiol. Biochem. Zool. 77, 1019–1042. (10.1086/425185) PubMed DOI

Legendre LJ, Davesne D. 2020. The evolution of mechanisms involved in vertebrate endothermy. Phil. Trans. R. Soc. B 375, 20190136 (10.1098/rstb.2019.0136) PubMed DOI PMC

Fastovsky DE, Weishampel DB. 2009. Dinosaurs. A concise natural history. Cambridge, UK: Cambridge University Press.

Nespolo RF, Bacigalupe LD, Figueroa CC, Koteja P, Opazo JC. 2011. Using new tools to solve an old problem: the evolution of endothermy in vertebrates. Trends Ecol. Evol. 26, 414–423. (10.1016/j.tree.2011.04.004) PubMed DOI

Seymour RS, Bennett-Stamper CL, Johnston SD, Carrier DR, Grigg GC. 2004. Evidence for endothermic ancestors of crocodiles at the stem of archosaur evolution. Physiol. Biochem. Zool. 77, 1051–1067. (10.1086/422766) PubMed DOI

Bernard A, et al. 2010. Regulation of body temperature by some mesozoic marine reptiles. Science 328, 1379–1382. (10.1126/science.1187443) PubMed DOI

Frýdlová P, et al. 2020. Data from: Determinate growth is predominant and likely ancestral in squamate reptiles. Dryad Digital Repository. ( ) PubMed DOI PMC

Zobrazit více v PubMed

Dryad
10.5061/dryad.dbrv15dxz

figshare
10.6084/m9.figshare.c.5230784

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...