Universality of indeterminate growth in lizards rejected: the micro-CT reveals contrasting timing of growth cartilage persistence in iguanas, agamas, and chameleons

. 2019 Dec 12 ; 9 (1) : 18913. [epub] 20191212

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31831851
Odkazy

PubMed 31831851
PubMed Central PMC6908584
DOI 10.1038/s41598-019-54573-5
PII: 10.1038/s41598-019-54573-5
Knihovny.cz E-zdroje

Squamate reptiles are considered to exhibit indeterminate growth. Nevertheless, current literature disputes the available definitions of this growth type, presents new theoretical models, and questions its universality in cold-blooded vertebrates. We have followed up on our previous research employing micro-CT to explore growth plate cartilage (GPC) in the epiphysis of long bones, which is responsible for longitudinal skeletal growth by the endochondral ossification process. We focused on numerous and highly diversified group of the Iguania clade comprising Acrodonta (agamas and chameleons) and Pleurodonta ("iguanas"). We recorded the absence of GPC in most of the examined adult Pleurodonta specimens and interpret it as an irreversible arrest of skeletal growth. This finding clearly rejects the universality of indeterminate growth in lizards. On the other hand, we found apparent GPC preservation in most of the adult specimens belonging to Acrodonta. This suggests a preserved ability to continue body growth throughout most of their life. We discuss the uncovered disparity between Acrodonta and Pleurodonta and emphasize the importance of GPC degradation timing.

Zobrazit více v PubMed

Lincoln, R. J., Boxhall, G. A. & Clark, P. F. A dictionary of ecology, evolution and systematics. (Cambridge University Press, 1982).

Reiss, M. J. The Allometry of Growth and Reproduction. (Cambridge University Press, 1989).

Sebens KP. The ecology of indeterminate growth in animals. Annual Review of Ecology and Systematics. 1987;18:371–407. doi: 10.1146/annurev.ecolsys.18.1.371. DOI

Haines RW. The evolution of epiphysis and of endochondral bone. Biological Review. 1942;17:267–292. doi: 10.1111/j.1469-185X.1942.tb00440.x. DOI

Haines, R. W. Epiphysis and sesamoids. (ed Gans, C.) 81–115 (Academic Press, 1969).

Kozlowski J. Optimal allocation of resources explains interspecific life-history patterns in animals with indeterminate growth. Proceedings of the Royal Society B-Biological Sciences. 1996;263:559–566. doi: 10.1098/rspb.1996.0084. DOI

Kozlowski J, Uchmanski J. Optimal individual growth and reproduction in perennial species with indeterminate growth. Evolutionary Ecology. 1987;1:214–230. doi: 10.1007/bf02067552. DOI

Stamps JA, Mangel M, Phillips JA. A new look at relationships between size at maturity and asymptotic size. American Naturalist. 1998;152:470–479. doi: 10.1086/286183. PubMed DOI

Sirbulescu RF, Ilies I, Meyer A, Zupanc GKH. Additive Neurogenesis Supported by Multiple Stem Cell Populations Mediates Adult Spinal Cord Development: A Spatiotemporal Statistical Mapping Analysis in a Teleost Model of Indeterminate Growth. Developmental Neurobiology. 2017;77:1269–1307. doi: 10.1002/dneu.22511. PubMed DOI

Karkach AS. Trajectories and models of individual growth. Demographic Research. 2006;15:348–+. doi: 10.4054/DemRes.2006.15.12. DOI

Andrews AH, DeMartini EE, Brodziak J, Nichols RS, Humphreys RL. A long-lived life history for a tropical, deepwater snapper (Pristipomoides filamentosus): bomb radiocarbon and lead-radium dating as extensions of daily increment analyses in otoliths. Canadian Journal of Fisheries and Aquatic Sciences. 2012;69:1850–1869. doi: 10.1139/f2012-109. DOI

Campana SE, Valentin AE, MacLellan SE, Groot JB. Image-enhanced burnt otoliths, bomb radiocarbon and the growth dynamics of redfish (Sebastes mentella and S. fasciatus) off the eastern coast of Canada. Marine and Freshwater Research. 2016;67:925–936. doi: 10.1071/mf15002. DOI

Bronikowski AM, Arnold SJ. The evolutionary ecology of life history variation in the garter snake Thamnophis elegans. Ecology. 1999;80:2314–2325. doi: 10.1890/0012-9658(1999)080[2314:teeolh]2.0.co;2. PubMed DOI

Castanet J, Newman DG, Saintgirons H. Skeletochronological data on the growth, age, and population-structure of the Tuatara, Sphenodon punctatus, on Stephens Island and Lady Island, New Zeland. Herpetologica. 1988;44:25–37.

Congdon JD, Nagle RD, Kinney OM, Sels RCV. Hypotheses of aging in a long-lived vertebrate, Blanding’s turtle (Emydoidea blandingii) Experimental Gerontology. 2001;36:813–827. doi: 10.1016/s0531-5565(00)00242-4. PubMed DOI

Woodward HN, Horner JR, Farlow JO. Osteohistological Evidence for Determinate Growth in the American Alligator. Journal of Herpetology. 2011;45:339–342. doi: 10.1670/10-274.1. DOI

Carter DR, Mikic B, Padian K. Epigenetic mechanical factors in the evolution of long bone epiphyses. Zoological Journal of the Linnean Society. 1998;123:163–178. doi: 10.1111/j.1096-3642.1998.tb01298.x. DOI

Washburn SL. The sequence of epiphyseal union in the Opossum. Anatomical Record. 1946;95:353–363. doi: 10.1002/ar.1090950311. PubMed DOI

Lowrance EW. Variability and growth of the Opossum skeleton. Journal of Morphology. 1949;85:569–593. doi: 10.1002/jmor.1050850310. PubMed DOI

Ciancio MR, Castro MC, Galliari FC, Carlini AA, Asher RJ. Evolutionary Implications of Dental Eruption in Dasypus (Xenarthra) Journal of Mammalian Evolution. 2012;19:1–8. doi: 10.1007/s10914-011-9177-7. DOI

Quesnel L, King WJ, Coulson G, Festa-Bianchet M. Tall young females get ahead: size-specific fecundity in wild kangaroos suggests a steep trade-off with growth. Oecologia. 2018;186:59–71. doi: 10.1007/s00442-017-4003-4. PubMed DOI

Frydlova P, et al. Patterns of growth in monitor lizards (Varanidae) as revealed by computed tomography of femoral growth plates. Zoomorphology. 2017;136:95–106. doi: 10.1007/s00435-016-0338-3. DOI

Omeyer LCM, Fuller WJ, Godley BJ, Snape RTE, Broderick AC. Determinate or indeterminate growth? Revisiting the growth strategy of sea turtles. Marine Ecology Progress Series. 2018;596:199–211. doi: 10.3354/meps12570. DOI

Werner J, Sfakianakis N, Rendall AD, Griebeler EM. Energy intake functions and energy budgets of ectotherms and endotherms derived from their ontogenetic growth in body mass and timing of sexual maturation. Journal of Theoretical Biology. 2018;444:83–92. doi: 10.1016/j.jtbi.2018.02.007. PubMed DOI

Johansson J, Brannstrom A, Metz JAJ, Dieckmann U. Twelve fundamental life histories evolving through allocation-dependent fecundity and survival. Ecology and Evolution. 2018;8:3172–3186. doi: 10.1002/ece3.3730. PubMed DOI PMC

Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332–336. doi: 10.1038/nature01657. PubMed DOI

Hall, B. K. & ebrary Inc. Bones and cartilage developmental and evolutionary skeletal biology. (Elsevier Academic Press, 2005).

Hunziker EB. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microscopy Research and Technique. 1994;28:505–519. doi: 10.1002/jemt.1070280606. PubMed DOI

van der Eerden BCJ, Karperien M, Wit JM. Systemic and local regulation of the growth plate. Endocrine Reviews. 2003;24:782–801. doi: 10.1210/er.2002-0033. PubMed DOI

Baron J, et al. Catch-up growth after glucocorticoid excess – a mechanism intrinsic to the growth plate. Endocrinology. 1994;135:1367–1371. doi: 10.1210/en.135.4.1367. PubMed DOI

Marino R, et al. Catch-up growth after hypothyroidism is caused by delayed growth plate senescence. Endocrinology. 2008;149:1820–1828. doi: 10.1210/en.2007-0993. PubMed DOI PMC

Weise M, et al. Effects of estrogen on growth plate senescence and epiphyseal fusion. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:6871–6876. doi: 10.1073/pnas.121180498. PubMed DOI PMC

Zheng Y, Wiens JJ. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI

Scharf I, et al. Late bloomers and baby boomers: ecological drivers of longevity in squamates and the tuatara. Global Ecology and Biogeography. 2015;24:396–405. doi: 10.1111/geb.12244. DOI

Tolley, K. & Herrell, A. The Biology of Chameleons. (California University Press, 2013).

Karsten KB, Andriamandimbiarisoa LN, Fox SF, Raxworthy CJ. A unique life history among tetrapods: An annual chameleon living mostly as an egg. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:8980–8984. doi: 10.1073/pnas.0802468105. PubMed DOI PMC

Armstrong DP, Keevil MG, Rollinson N, Brooks RJ. Subtle individual variation in indeterminate growth leads to major variation in survival and lifetime reproductive output in a long-lived reptile. Functional Ecology. 2018;32:752–761. doi: 10.1111/1365-2435.13014. DOI

Stuart-Fox D. A test of Rensch’s rule in dwarf chameleons (Bradypodion spp.), a group with female-biased sexual size dimorphism. Evolutionary Ecology. 2009;23:425–433. doi: 10.1007/s10682-008-9242-8. DOI

Karsten KB, Andriamandimbiarisoa LN, Fox SF, Raxworthy CJ. Sexual selection on body size and secondary sexual characters in 2 closely related, sympatric chameleons in Madagascar. Behavioral Ecology. 2009;20:1079–1088. doi: 10.1093/beheco/arp100. DOI

da Silva Jessica M., Herrel Anthony, Measey G. John, Tolley Krystal A. Sexual Dimorphism in Bite Performance Drives Morphological Variation in Chameleons. PLoS ONE. 2014;9(1):e86846. doi: 10.1371/journal.pone.0086846. PubMed DOI PMC

Ejsmond MJ, Czarnoleski M, Kapustka F, Kozlowski J. How to Time Growth and Reproduction during the Vegetative Season: An Evolutionary Choice for Indeterminate Growers in Seasonal Environments. American Naturalist. 2010;175:551–563. doi: 10.1086/651589. PubMed DOI

Ejsmond MJ, Varpe O, Czarnoleski M, Kozlowski J. Seasonality in Offspring Value and Trade-Offs with Growth Explain Capital Breeding. American Naturalist. 2015;186:E111–E125. doi: 10.1086/683119. DOI

Shine R. Costs of reproduction in reptiles. Oecologia. 1980;46:92–100. doi: 10.1007/bf00346972. PubMed DOI

Schwarzkopf L, Shine R. Costs of reproduction in lizards – escape tactics and susceptibility to predation. Behavioral Ecology and Sociobiology. 1992;31:17–25. doi: 10.1007/bf00167812. DOI

Cox RM, Stenquist DS, Calsbeek R. Testosterone, growth and the evolution of sexual size dimorphism. Journal of Evolutionary Biology. 2009;22:1586–1598. doi: 10.1111/j.1420-9101.2009.01772.x. PubMed DOI

Stahl, S. J. Captive management, breeding, and common medical problems of the veiled chameleon (Chamaeleo calyptratus). Proceedings of the Fourth Annual Conference of the Association of Reptilian and Amphibian Veterinarians, 29–40 (1997).

Alcala AC. Population biology of the ‘flying’ lizard, Draco volans, on Negros Island, Philippines. Natural and Applied Science Bulletin. 1967;20:335–372.

Pianka, E. R. Ecology of agamid lizard Abphibolurus isolepis in Western Australia. Copeia, 527-& (1971).

Mitchell FJ. Studies on the ecology of the agamid lizard Amphibolurus maculosus (Mitchell) Transactions of the Royal Society of South Australia. 1973;97:47–76.

Cogger, H. G. A study of the ecology and biology of the mallee dragon (Amphibolurus fordi) and its adaptations to survival in an arid environment, Macquarie University, (1969).

Bradshaw SD, Girons HS, Bradshaw FJ. Patterns of breeding in two species of agamid lizards in the arid subtropical Pilbara region of Western Australia. General and Comparative Endocrinology. 1991;82:407–424. doi: 10.1016/0016-6480(91)90316-x. PubMed DOI

Bringsøe H. Observations on growth and longevity in Uromastyx aegyptia (Forsskal, 1775) in the Negev Desert, southern Israel (Reptilia: Sauria: Agamidae) Faunistische Abhandlungen, Staatliches Museum für Tierkunde, Dresden. 1998;21:19–21.

Brown, D. A guide to Australian dragons in captivity. (ABK Publications, 2012).

Slavens, F. L. & Slavens, K. Reptiles and amphibians in captivity: breeding, longevity, and inventory. (Slaveware Publishing, 1999).

Charles Darwin Research Station Fact Sheet http://web.archive.org/web/20070606214921/http://www.darwinfoundation.org/files/species/pdf/land-iguana-en.pdf (2019)

Henderson, R. W. & Powell, R. Natural history of West Indian reptiles and amphibians. (University Press of Florida, 2009).

Iverson JB, Hines KN, Valiulis JM. The nesting ecology of the Allen Cays rock iguana, Cyclura Cychlura Inornata in the Bahamas. Herpetological Monographs. 2004;18:1–36. doi: 10.1655/0733-1347(2004)018[0001:tneota]2.0.co;2. DOI

Licht P, Gorman GC. Reproductive and fat cycles in Caribbean Anolis lizards. Univ. Calif. Publ. Zool. 1970;95:1–52.

Smith HM, Sinelnik G, Fawcett JD, Jones RE. A survey of the chronology of ovulation in Anoline lizard genera. Trans. Kans. Acad. Sci. 1973;75:107–120. doi: 10.2307/3627160. DOI

Decourcy KR, Jenssen TA. Structure and use of male territorial headbob signals by the lizard anolis carolinensis. Animal Behaviour. 1994;47:251–262. doi: 10.1006/anbe.1994.1037. DOI

Tokarz RR. Body size as factor determining dominance in staged agonistic encounters between male brown anoles (Anolis sagrei) Animal Behaviour. 1985;33:746–753. doi: 10.1016/s0003-3472(85)80006-3. DOI

Paterson AV. Effects of an individual’s removal on space use and behavior in territorial neighborhoods of brown anoles (Anolis sagrei) Herpetologica. 2002;58:382–393. doi: 10.1655/0018-0831(2002)058[0382:eoairo]2.0.co;2. DOI

Kratochvil L, Kubicka L. Why reduce clutch size to one or two eggs? Reproductive allometries reveal different evolutionary causes of invariant clutch size in lizards. Functional Ecology. 2007;21:171–177. doi: 10.1111/j.1365-2435.2006.01202.x. DOI

Cox RM, Calsbeek R. Severe costs of reproduction persist in Anolis lizards despite the evolution of a single egg clutch. Evolution. 2010;64:1321–1330. doi: 10.1111/j.1558-5646.2009.00906.x. PubMed DOI

Jones RE, Guillette LJ, Summers CH, Tokarz RR, Crews D. The relationship among ovarian condition, steroid-hormones, and estrous behavior in Anolis carolinensis. Journal of Experimental Zoology. 1983;227:145–154. doi: 10.1002/jez.1402270119. PubMed DOI

Zena LA, et al. Seasonal changes in plasma concentrations of the thyroid, glucocorticoid and reproductive hormones in the tegu lizard Salvator merianae. General and comparative endocrinology. 2018;273:134–143. doi: 10.1016/j.ygcen.2018.06.006. PubMed DOI

Wronski TJ, Lowry PL, Walsh CC, Ignaszewski LA. Skeletal alterations in ovariectomized rats. Calcified Tissue International. 1985;37:324–328. doi: 10.1007/bf02554882. PubMed DOI

Kalu DN, et al. Skeletal response of ovariectomized rats to low and high doses of 17-beta-estradiol. Bone and Mineral. 1991;14:175–187. doi: 10.1016/0169-6009(91)90021-q. PubMed DOI

Schmidt IU, Wakley GK, Turner RT. Effects of estrogen and progesterone on tibia histomorphometry in growing rats. Calcified Tissue International. 2000;67:47–52. doi: 10.1007/s00223001096. PubMed DOI

Frynta D, et al. Ontogeny of Sexual Size Dimorphism in Monitor Lizards: Males Grow for a Longer Period, but not at a Faster Rate. Zoological Science. 2010;27:917–923. doi: 10.2108/zsj.27.917. PubMed DOI

Frydlova P, et al. Easy life of males? Indirect evidence that growth is easier than egg production in mangrove-dwelling monitor lizards (Varanus indicus). Acta. Herpetologica. 2013;8:105–113.

Kumas M, Ayaz D. Age determination and long bone histology in Stellagama stellio (Linnaeus, 1758) (Squamata: Sauria: Agamidae) populations in Turkey. Vertebrate. Zoology. 2014;64:113–126.

Shine R, Charnov EL. Patterns of survival, growth, and maturation in snakes and lizards. American Naturalist. 1992;139:1257–1269. doi: 10.1086/285385. DOI

Tureček, A. The effect of steroid hormones on sexually dimorphic bone growth in geckos. Master thesis, Charles University, (2017).

Charnov EL, Turner TF, Winemiller KO. Reproductive constraints and the evolution of life histories with indeterminate growth. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:9460–9464. doi: 10.1073/pnas.161294498. PubMed DOI PMC

Sinervo B, Adolph SC. Growth plasticity and thermal opportunity in Sceloporus lizards. Ecology. 1994;75:776–790. doi: 10.2307/1941734. DOI

Bonnet X, Shine R, Naulleau G, Thiburce C. Plastic vipers: influence of food intake on the size and shape of Gaboon vipers (Bitis gabonica) Journal of Zoology. 2001;255:341–351. doi: 10.1017/s0952836901001443. DOI

Tanaka K. Phenotypic plasticity of body size in an insular population of a snake. Herpetologica. 2011;67:46–57. doi: 10.1655/herpetologida-d-10-00022.1. DOI

Dawbin, W. H. The tuatara Sphenodon punctatus: aspects of life history, growth and longevity. NZ Wildlife Service, Department of Internal Affairs. (1982).

Wikramanayake ED, Dryden GL. The reproductive ecology of Varanus indicus on Guam. Herpetologica. 1988;44:338–344.

Dudak J, et al. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment. 2015;773:81–86. doi: 10.1016/j.nima.2014.10.076. DOI

Jakubek J, Jakubek M, Platkevic M, Soukup P, Turecek D, Sykora V, Vavrik D. Large area pixel detector WIDEPIX with full area sensitivity composed of 100 Timepix assemblies with edgeless sensors. Journal of Instrumentation. 2014;9(04):C04018–C04018. doi: 10.1088/1748-0221/9/04/C04018. DOI

Jakubek J, Holy T, Jakubek M, Vavrik D, Vykydal Z. Experimental system for high resolution X-ray transmission radiography. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment. 2006;563:278–281. doi: 10.1016/j.nima.2006.01.033. DOI

Dudak J., Karch J., Holcova K., Zemlicka J. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix. Journal of Instrumentation. 2017;12(12):C12024–C12024. doi: 10.1088/1748-0221/12/12/C12024. DOI

Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

CTVox, B. http://bruker-microct.com/products/ctvox.htm.

R: a language and environment for statistical computing (Vienna, Austria, 2012).

Felsenstein J. Phylogenies and the comparative method. American Naturalist. 1985;125:1–15. doi: 10.1086/284325. PubMed DOI

Ives AR, Helmus MR. Generalized linear mixed models for phylogenetic analyses of community structure. Ecological Monographs. 2011;81:511–525. doi: 10.1890/10-1264.1. DOI

Ives, A. R. & Garland, T., Jr. Phylogenetic regression for binary dependent variables (ed. Garamszegi, L. Z.) 231–261 (Springer-Verlag, 2014).

Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI

StatSoft, Inc. STATISTICA (data analysis software system), version 6. www.statsoft.com (2001).

Mesquite: a modular system for evolutionary analysis v. 3.51 (2018).

Huson DH, Scornavacca C. Dendroscope 3: An Interactive Tool for Rooted Phylogenetic Trees and Networks. Systematic Biology. 2012;61:1061–1067. doi: 10.1093/sysbio/sys062. PubMed DOI

Grafen A. The phylogenetic regression. Philosophical Transactions of the Royal Society of London. B, Biological Sciences. 1989;326(1233):119–157. doi: 10.1098/rstb.1989.0106. PubMed DOI

Martins EP, Hansen, Thomas F. Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data. The American Naturalist. 1997;149(4):646–667. doi: 10.1086/286013. DOI

Pinheiro, J. nlme: linear and nonlinear mixed effects models. R package version 3.1-96. http://cran. r-project. org/web/packages/nlme/.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...