The first description of dermal armour in snakes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37076516
PubMed Central
PMC10115820
DOI
10.1038/s41598-023-33244-6
PII: 10.1038/s41598-023-33244-6
Knihovny.cz E-zdroje
- MeSH
- Boidae * MeSH
- fylogeneze MeSH
- hadi MeSH
- ještěři * anatomie a histologie MeSH
- lidé MeSH
- písek MeSH
- rentgenová mikrotomografie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- písek MeSH
Osteoderms, also called dermal armour, often play a role in predator defence. The presence of osteoderms is highly irregularly distributed across the squamate phylogeny and they have not been found in snakes. In this study, we searched for candidate snake species that would benefit from such armour to protect their body, focusing primarily on fossorial species with defensive tail displays. We examined the tail morphology of 27 snake species from different families using micro-computed tomography (µCT) and micro- radiography. We discovered dermal armour in four species of sand boas (Erycidae) that also feature enlarged and highly modified caudal vertebrae. This is the first description of dermal armour in snakes. Ancestral state reconstructions revealed that osteoderms likely evolved once or multiple times in Erycidae. We have not found osteoderms in any other examined snake species. Nevertheless, similar structures are known from unrelated squamate clades, such as gerrhosaurids and geckos. This supports the idea of underlying deep developmental homology. We propose the hypothesis that osteoderms protect sand boas like the "brigandine armour" of medieval warriors. We interpret it as another component of the sand boas' rich defence strategy.
Department of Anatomy 3rd Faculty of Medicine Charles University 100 00 Prague Czech Republic
Department of Zoology Faculty of Science Charles University 128 43 Prague Czech Republic
Zobrazit více v PubMed
Vickaryous MK, Sire JY. The integumentary skeleton of tetrapods: Origin, evolution, and development. J. Anat. 2009;214:441–464. doi: 10.1111/j.1469-7580.2008.01043.x. PubMed DOI PMC
Zylberberg L, Castanet J, Dericqles A. Structure of the dermal scales in Gymnophiona (Amphibia) J. Morphol. 1980;165:41–54. doi: 10.1002/jmor.1051650105. PubMed DOI
Zylberberg L, Wake MH. Structure of the scales of Dermophis and Microcaecilia (Amphibia, Gymnophiona), and a comparison to dermal ossification of other vertebrates. J. Morphol. 1990;206:25–43. doi: 10.1002/jmor.1052060104. PubMed DOI
Arun D, Sandhya S, Akbarsha MA, Oommen OV, Divya L. An insight into the skin glands, dermal scales and secretions of the caecilian amphibian Ichthyophis beddomei. Saudi J. Biol. Sci. 2020;27:2683–2690. doi: 10.1016/j.sjbs.2020.06.009. PubMed DOI PMC
Toledo RC, Jared C. The calcified dermal layer in Anurans. Comp. Biochem. Physiol. Part A Physiol. 1993;104:443–448. doi: 10.1016/0300-9629(93)90444-9. DOI
Katchburian E, et al. Mineralized dermal layer of the Brazilian tree-frog Corythomantis greeningi. J. Morphol. 2001;248:56–63. doi: 10.1002/jmor.1020. PubMed DOI
Delorme S, Vickaryous MK. Calcified integumentary structures in Anurans. Faseb J. 2010;24:634. doi: 10.1096/fasebj.24.1_supplement.634.1. DOI
Gadow, H. Cambridge Natural History, Vol VIII: Amphibia and Reptiles (Hafner Publishing Company, 1901).
Francillon-Vieillot H, de Buffrénil V, Castanet J, Geraudie J, Meunier FJ, Sire JY, Zylberberg L, de Ricqles A. Microstructure and mineralization of vertebrate skeletal tissues. In: Carter JG, editor. Skeletal Biomineralization; Patterns, Processes and Evolutionary Trends. Van Nostrand Reinhold; 1990. pp. 471–548.
de Ricqlès A, Pereda Suberbiola X., Gasparini Z, Olivero E. Histology of dermal ossifications in an ankylosaurian dinosaur from the Late Cretaceous of Antarctica in International Symposium on Mesozoic Terrestrial Ecosystems (ed. Leanza, H.A.) 171–174 (Asociación Paleontológica Argentina).
Main RP, de Ricqles A, Horner JR, Padian K. The evolution and function of thyreophoran dinosaur scutes: Implications for plate function in stegosaurs. Paleobiology. 2005;31:291–314. doi: 10.1666/0094-8373(2005)031[0291:teafot]2.0.co;2. DOI
Dilkes D, Brown LE. Biomechanics of the vertebrae and associated osteoderms of the Early Permian amphibian Cacops aspidephorus. J. Zool. 2007;271:396–407. doi: 10.1111/j.1469-7998.2006.00221.x. DOI
Broeckhoven C, du Plessis A, le Roux SG, Mouton PLN, Hui C. Beauty is more than skin deep: A non-invasive protocol for in vivo anatomical study using micro-CT. Methods Ecol. Evol. 2017;8:358–369. doi: 10.1111/2041-210x.12661. DOI
Broeckhoven C, du Plessis A. X-ray microtomography in herpetological research: A review. Amphibia-Reptilia. 2018;39:377–401. doi: 10.1163/15685381-20181102. DOI
Hall BK. Bones and Cartilage: Developmental and Evolutionary Skeletal Biology. Elsevier Academic Press; 2015.
Stanley, et al. A review of Cordylus machadoi (Squamata: Cordylidae) in southwestern Angola, with the description of a new species from the Pro-Namib desert. Zootaxa. 2016;4061(3):201–226. doi: 10.11646/zootaxa.4061.3.1. PubMed DOI
Broeckhoven C, de Kock C, Mouton PLFN. Sexual dimorphism in osteoderm expression and the role of male intrasexual aggression. Biol. J. Linn. Soc. 2017;122(2):329–339. doi: 10.1093/biolinnean/blx066. DOI
Jarvik E. Basic Structure and Evolution of Vertebrates. Academic Press; 1980.
Dias EV, Richter M. On the squamation of Australerpeton cosgriffi Barberena, a temnospondyl amphibian from the Upper Permian of Brazil. Ann. Acad. Bras. Cienc. 2002;74:477–490. doi: 10.1590/s0001-37652002000300010. DOI
Ruibal R, Shoemaker V. Osteoderms in Anurans. J. Herpetol. 1984;18:313–328. doi: 10.2307/1564085. DOI
Zylberberg L, Castanet J. New data on the structure and the growth of the osteoderms in the reptile Anguis fragilis (Anguidae, Squamata) J. Morphol. 1985;186:327–342. doi: 10.1002/jmor.1051860309. PubMed DOI
Vickaryous MK, Meldrum G, Russell AP. Armored geckos: A histological investigation of osteoderm development in Tarentola (Phyllodactylidae) and Gekko (Gekkonidae) with comments on their regeneration and inferred function. J. Morphol. 2015;276:1345–1357. doi: 10.1002/jmor.20422. PubMed DOI
Scheyer TM, Sander PM, Joyce WG, Boehme W, Witzel U. A plywood structure in the shell of fossil and living soft-shelled turtles (Trionychidae) and its evolutionary implications. Org. Divers. Evol. 2007;7:136–144. doi: 10.1016/j.ode.2006.03.002. DOI
Sun CY, Chen PY. Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms. Acta Biomater. 2013;9:9049–9064. doi: 10.1016/j.actbio.2013.07.016. PubMed DOI
Hill RV. Comparative anatomy and histology of xenarthran osteoderms. J. Morphol. 2006;267:1441–1460. doi: 10.1002/jmor.10490. PubMed DOI
Vickaryous MK, Hall BK. Osteoderm morphology and development in the nine-banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata) J. Morphol. 2006;267:1273–1283. doi: 10.1002/jmor.10475. PubMed DOI
Scarano AC, Ciancio MR, Barbeito-Andres J, Barbeito CG, Krmpotic CM. Micromorphology of osteoderms in Dasypodidae (Cingulata, Mammalia): Characterization and 3D-reconstructions. J. Morphol. 2020;281:258–272. doi: 10.1002/jmor.21096. PubMed DOI
Hill RV. Integration of morphological data sets for phylogenetic analysis of amniota: The importance of integumentary characters and increased taxonomic sampling. Syst. Biol. 2005;54:530–547. doi: 10.1080/10635150590950326. PubMed DOI
Williams C, et al. A review of the osteoderms of lizards (Reptilia: Squamata) Biol. Rev. 2022;97:1–19. doi: 10.1111/brv.12788. PubMed DOI PMC
Vickaryous MK, Hall BK. Development of the dermal skeleton in Alligator mississippiensis (Archosauria, crocodylia) with comments on the homology of osteoderms. J. Morphol. 2008;269:398–422. doi: 10.1002/jmor.10575. PubMed DOI
Broeckhoven C, du Plessis A, Minne B, Van Damme R. Evolutionary morphology of osteoderms in Squamates. J. Morphol. 2019;280:S90–S90.
Reynoso VH. A “beaded” sphenodontian (Diapsida: Lepidosauria) from the early Cretaceous of central Mexico. J. Vertebr. Paleontol. 1997;17:52–59. doi: 10.1080/02724634.1997.10010953. DOI
Paluh DJ, Griffing AH, Bauer AM. Sheddable armour: Identification of osteoderms in the integument of Geckolepis maculata (Gekkota) Afr. J. Herpetol. 2017;66:12–24. doi: 10.1080/21564574.2017.1281172. DOI
Laver RJ, et al. The development of cephalic armor in the tokay gecko (Squamata: Gekkonidae: Gekko gecko) J. Morphol. 2020;281:213–228. doi: 10.1002/jmor.21092. PubMed DOI
Paluh DJ, Bauer AM. Comparative skull anatomy of terrestrial and crevice-dwelling Trachylepis skinks (Squamata: Scincidae) with a survey of resources in scincid cranial osteology. PLoS ONE. 2017 doi: 10.1371/journal.pone.0184414. PubMed DOI PMC
Costantini D, Alonso ML, Moazen M, Bruner E. The relationship between cephalic scales and bones in lizards: A preliminary microtomographic survey on three lacertid species. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2010;293:183–194. doi: 10.1002/ar.21048. PubMed DOI
Erickson GM, De Ricqles A, De Buffrenil V, Molnar RE, Bayless MK. Vermiform bones and the evolution of gigantism in Megalania—How a reptilian fox became a lion. J. Vertebr. Paleontol. 2003;23:966–970. doi: 10.1671/23. DOI
Iacoviello F, et al. The multiscale hierarchical structure of Heloderma suspectum osteoderms and their mechanical properties. Acta Biomater. 2020;107:194–203. doi: 10.1016/j.actbio.2020.02.029. PubMed DOI
Maisano JA, Laduc TJ, Bell CJ, Barber D. The cephalic osteoderms of Varanus komodoensis as revealed by high-resolution X-ray computed tomography. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2019;302:1675–1680. doi: 10.1002/ar.24197. PubMed DOI
Schucht PJ, Ruhr PT, Geier B, Glaw F, Lambertz M. Armored with skin and bone: A combined histological and mu CT-study of the exceptional integument of the Antsingy leaf chameleon Brookesia perarmata (Angel, 1933) J. Morphol. 2020;281:754–764. doi: 10.1002/jmor.21135. PubMed DOI
Zheng Y, Wiens JJ. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI
Levrat-Calviac V, Castanet J, Zylberberg L. The structure of the osteoderms in two lizards. In: Roček Z, editor. Tarentola mauritanica and Anguis fragilis in Studies in Herpetology: Proceedings of the European Herpetological Meeting. Prague Charles University; 1986. pp. 341–344.
Broeckhoven C, El Adak Y, Hui C, Van Damme R, Stankowich T. On dangerous ground: The evolution of body armour in cordyline lizards. Proc. Roy. Soc. B Biol. Sci. 2018;285:10. doi: 10.1098/rspb.2018.0513. PubMed DOI PMC
Broeckhoven C, du Plessis A, Hui C. Functional trade-off between strength and thermal capacity of dermal armor: Insights from girdled lizards. J. Mech. Behav. Biomed. Mat. 2017;74:189–194. doi: 10.1016/j.jmbbm.2017.06.007. PubMed DOI
Broeckhoven C, Mouton P, Hui C. Proximate causes of variation in dermal armour: Insights from armadillo lizards. Oikos. 2018;127:1449–1458. doi: 10.1111/oik.05401. DOI
Frydlova P, et al. Patterns of growth in monitor lizards (Varanidae) as revealed by computed tomography of femoral growth plates. Zoomorphology. 2017;136:95–106. doi: 10.1007/s00435-016-0338-3. DOI
Frydlova P, et al. Universality of indeterminate growth in lizards rejected: The micro-CT reveals contrasting timing of growth cartilage persistence in iguanas, agamas, and chameleons. Sci. Rep. 2019;9:14. doi: 10.1038/s41598-019-54573-5. PubMed DOI PMC
Frydlova P, et al. Determinate growth is predominant and likely ancestral in squamate reptiles. Proc. Roy. Soc. B Biol. Sci. 2020;287:8. doi: 10.1098/rspb.2020.2737. PubMed DOI PMC
Shu GC, et al. A rapid, non-invasive method for anatomical observations of tadpole vertebrae in vivo. Asian Herpetol. Res. 2018;9:99–109. doi: 10.16373/j.cnki.ahr.180003. DOI
Buchwitz M, Voigt S. Peculiar carapace structure of a Triassic chroniosuchian implies evolutionary shift in trunk flexibility. J. Vertebr. Paleontol. 2010;30:1697–1708. doi: 10.1080/02724634.2010.521685. DOI
Farlow JO, Hayashi S, Tattersall GJ. Internal vascularity of the dermal plates of Stegosaurus (Ornithischia, Thyreophora) Swiss J. Geosci. 2010;103:173–185. doi: 10.1007/s00015-010-0021-5. DOI
Dacke CG, et al. Alligator osteoderms as a source of labile calcium for eggshell formation. J. Zool. 2015;297:255–264. doi: 10.1111/jzo.12272. DOI
Uetz, P., Freed, P., Aguilar, R., & Hošek, J. (eds.). The Reptile Databasehttp://www.reptile-database.org (2022).
Losos JB, Mouton PLFN, Bickel R, Cornelius I, Ruddock L. The effect of body armature on escape behaviour in cordylid lizards. Anim. Behav. 2002;64(2):313–321. doi: 10.1006/anbe.2002.3051. DOI
Kéver L, et al. Biomechanical behaviour of lizard osteoderms and skin under external loading. J. Exp. Biol. 2022;225(20):244551. doi: 10.1242/jeb.244551. PubMed DOI
Greene, H. Defensive tail display by snakes and amphisbaenians. J. Herpetol. 143–161 (1973).
Lillywhite H. How Snakes Work: Structure, Function and Behavior of the World’s Snakes. Oxford University Press; 2014.
O’Shea M. The Book of Snakes: A Life-Size Guide to Six Hundred Species from Around the World. University of Chicago Press; 2018.
Sood, M. The caudal vertebræ of Eryx johnii (Russell). Vol. 14 (Springer India, 1941).
Szyndlar Z, Schleich H. Two species of the genus Eryx (Serpentes; Boidae; Erycinae) from the Spanish Neogene with comments on the past distribution of the genus in Europe. Amphibia-Reptilia. 1994;15:233–248. doi: 10.1163/156853894X00010. DOI
Reynolds RG, Niemiler ML, Revell LJ. Toward a tree-of-life for the boas and pythons: Multi locus species-level phylogeny with unprecedented taxon sampling. Mol. Phylogenet. Evol. 2014;71:201–213. doi: 10.1016/j.ympev.2013.11.011. PubMed DOI
Bever GS, Bell CJ, Maisano JA. The ossified braincase and cephalic osteoderms of Shinisaurus crocodilurus (Squamata, Shinisauridae) Palaeontol. Electron. 2005;8:1–36.
Hoyer R. Description of a Rubber Boa (Charina bottae) population from western Oregon. Herpetologica. 1974;30:275–283.
Rodriguez-Robles JA, Bell CJ, Greene HW. Gape size and evolution of diet in snakes: Feeding ecology of erycine boas. J. Zool. 1999;248:49–58. doi: 10.1111/j.1469-7998.1999.tb01021.x. DOI
Cyriac VP, Kodandaramaiah U. Digging their own macroevolutionary grave: Fossoriality as an evolutionary dead end in snakes. J. Evol. Biol. 2018;31:587–598. doi: 10.1111/jeb.13248. PubMed DOI
Landová E, Musilová V, Polák J, Sedláčková K, Frynta D. Antipredatory reaction of the leopard gecko Eublepharis macularius to snake predators. Cur. Zool. 2016;62(5):439–450. doi: 10.1093/cz/zow050. PubMed DOI PMC
Gans C. Studies on amphisbaenids (Amphisbaenia, Reptilia). 1. A taxonomic revision of the Trogonophinae, and a functional interpretation of the amphisbaenid adaptive pattern. Bull. Am. Mus. Nat. Hist. 1960;119:129–204.
Klein MCG, Deuschle JK, Gorb SN. Material properties of the skin of the Kenyan sand boa Gongylophis colubrinus (Squamata, Boidae) J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2010;196:659–668. doi: 10.1007/s00359-010-0556-y. PubMed DOI
Klein MCG, Gorb SN. Scratch resistance of the ventral skin surface in four snake species (Squamata, Serpentes) Zoology. 2016;119:81–96. doi: 10.1016/j.zool.2015.12.006. PubMed DOI
Smith KT, Scanferla A. A nearly complete skeleton of the oldest definitive erycine boid (Messel, Germany) Geodiversitas. 2021;43:1–24. doi: 10.5252/geodiversitas2021v43a1. DOI
Da Silva MAO, et al. Morphology of the snake spectacle reflects its evolutionary adaptation and development. BMC Vet. Res. 2017 doi: 10.1186/s12917-017-1193-2. PubMed DOI PMC
Roscito JG, Rodrigues MT. Comparative cranial osteology of fossorial lizards from the tribe Gymnophthalmini (Squamata, Gymnophthalmidae) J. Morphol. 2010;271:1352–1365. doi: 10.1002/jmor.10878. PubMed DOI
Olori JC, Bell CJ. Comparative skull morphology of uropeltid snakes (Alethinophidia: Uropeltidae) with special reference to disarticulated elements and variation. PLoS ONE. 2012 doi: 10.1371/journal.pone.0032450. PubMed DOI PMC
Andrews RM, Pough FH, Collazo A, Dequeiroz A. The ecological cost of morphological specialization—Feeding by a fossorial lizard. Oecologia. 1987;73:139–145. doi: 10.1007/bf00376990. PubMed DOI
Vanhooydonck B, Boistel R, Fernandez V, Herrel A. Push and bite: Trade-offs between burrowing and biting in a burrowing skink (Acontias percivali) Biol. J. Linn. Soc. 2011;102:91–99. doi: 10.1111/j.1095-8312.2010.01563.x. DOI
Rage JC. Erycine snake (Boidae) of genus Calamagras from French lower Eocene, with comments on phylogeny of Erycine. Herpetologica. 1977;33:459–463.
Kluge AG. Calabaria and the phylogeny of Erycine snakes. Zool. J. Linn. Soc. 1993;107:293–351. doi: 10.1111/j.1096-3642.1993.tb00290.x. DOI
Szyndlar Z. Snakes from the lower Miocene locality of Dolnice (Czechoslovakia) J. Vertebr. Paleontol. 1987;7(1):55–71. doi: 10.1080/02724634.1987.10011637. DOI
Pyron RA, Burbrink FT, Wiens JJ. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013 doi: 10.1186/1471-2148-13-93. PubMed DOI PMC
Tonini JFR, Beard KH, Ferreira RB, Jetz W, Pyron RA. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 2016;204:23–31. doi: 10.1016/j.biocon.2016.03.039. DOI
Eskandarzadeh N, et al. Revised classification of the genus Eryx Daudin, 1803 (Serpentes: Erycidae) in Iran and neighbouring areas, based on mtDNA sequences and morphological data. Herpetol. J. 2020;30:2–12. doi: 10.33256/hj30.1.212. DOI
Han DW, Young BA. The rhinoceros among Serpents: Comparative anatomy and experimental biophysics of Calabar burrowing python (Calabaria reinhardtii) skin. J. Morphol. 2018;279:86–96. doi: 10.1002/jmor.20756. PubMed DOI
MorphoSource.org. https://www.morphosource.org/ (2022).
Reynolds R, Henderson R. Boas of the world (Superfamily Booidae): A checklist with systematic, taxonomic, and conservation assessments. Bull. Mus. Comp. Zool. 2018;162:1–58. doi: 10.3099/MCZ48.1. DOI
Shine R, Charnov EL. Patterns of survival, growth, and maturation in snakes and lizards. Am. Nat. 1992;139(6):1257–1269. doi: 10.1086/285385. DOI
Dudák J, Žemlička J, Mrzílková J, Zach P, Holcová K. Applicability of large-area single-photon counting detectors Timepix for high-resolution and high-contrast X-ray imaging of biological samples. IEEE Trans. Nucl. Sci. 2022 doi: 10.1109/TNS.2022.3140396. DOI
Object Research Systems (ORS) Inc (Montreal, Canada, 2021).
Verdenius HHW, Alma L. A quantitative study of decalcification methods in histology. J. Clin. Pathol. 1958;11:229–236. doi: 10.1136/jcp.11.3.229. PubMed DOI PMC
Mesquite: A modular system for evolutionary analysis v. 3.7.0 (2021).
Hidden Armour: The Passive Protective Function of Caudal Osteoderms in Snakes
Hooding cobras can get ahead of other snakes in the ability to evoke human fear
Dryad
10.5061/dryad.fxpnvx0wg