Development of male-larger sexual size dimorphism in a lizard: IGF1 peak long after sexual maturity overlaps with pronounced growth in males

. 2022 ; 13 () : 917460. [epub] 20220810

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36035474

Squamate reptiles have been considered to be indeterminate growers for a long time. However, recent studies demonstrate that bone prolongation is stopped in many lizards by the closure of bone growth plates. This shift in the paradigm of lizard growth has important consequences for questions concerning the proximate causes of sexual size dimorphism. The traditional model of highly plastic and indeterminate growth would correspond more to a long-term action of a sex-specific growth regulator. On the other hand, determinate growth would be more consistent with a regulator acting in a sex-specific manner on the activity of bone growth plates operating during the phase when a dimorphism in size develops. We followed the growth of males and females of the male-larger Madagascar ground gecko (Paroedura picta) and monitored the activity of bone growth plates, gonad size, levels of steroids, expression of their receptors (AR, ESR1), and expression of genes from the insulin-like growth factor network (IGF1, IGF2, IGF1R, and IGF2R) in livers. Specifically, we measured gene expression before the onset of dimorphic growth, at the time when males have more active bone growth plates and sexual size dimorphism was clearly visible, and after a period of pronounced growth in both sexes. We found a significant spike in the expression of IGF1 in males around the time when dimorphism develops. This overexpression in males comes long after an increase in circulating testosterone levels and sexual maturation in males, and it might be suppressed by ovarian hormones in females. The results suggest that sexual size dimorphism in male-larger lizards can be caused by a positive effect of high levels of IGF1 on bone growth. The peak in IGF1 resembles the situation during the pubertal growth spurt in humans, but in lizards, it seems to be sex-specific and disconnected from sexual maturation.

Zobrazit více v PubMed

Al-Sabah A., Stadnik P., Gilbert S. J., Duance V. C., Blain E. J. (2016). Importance of reference gene selection for articular cartilage mechanobiology studies. Osteoarthr. Cartil. 24, 719–730. 10.1016/j.joca.2015.11.007 PubMed DOI PMC

Badyaev A. V. (2002). Growing apart: An ontogenetic perspective on the evolution of sexual size dimorphism. Trends Ecol. Evol. 17, 369–378. 10.1016/S0169-5347(02)02569-7 DOI

Bauerová A., Kratochvíl L., Kubička L. (2020). Little if any role of male gonadal androgens in ontogeny of sexual dimorphism in body size and cranial casque in chameleons. Sci. Rep. 10, 2673. 10.1038/s41598-020-59501-6 PubMed DOI PMC

Beatty A. E., Schwartz T. S. (2020). Gene expression of the IGF hormones and IGF binding proteins across time and tissues in a model reptile. Physiol. Genomics 52, 423–434. 10.1152/physiolgenomics.00059.2020 PubMed DOI PMC

Bondesson M., Ruixin H., Lin C. Y., Williams C., Gustafsson J. A. (2015). Estrogen receptor signaling during vertebrate development. Biochim. Biophys. Acta 1849, 142–151. 10.1016/j.bbagrm.2014.06.005 PubMed DOI PMC

Brown A. L., Graham D. E., Nissley S. P., Hill D. J., Strain A. J., Rechler M. M., et al. (1986). Developmental regulation of insulin-like growth factor II mRNA in different rat tissues. J. Biol. Chem. 261, 13144–13150. 10.1016/s0021-9258(18)69282-8 PubMed DOI

Callewaert F., Venken K., Kopchick J. J., Torcasio A., van Lenthe G. H., Boonen S., et al. (2010). Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time-specific actions of sex steroids and IGF1: Evidence from pubertal mouse models. J. Bone Min. Res. 25, 617–626. 10.1359/jbmr.090828 PubMed DOI

Charnov E. L., Turner T. F., Winemiller K. O. (2001). Reproductive constraints and the evolution of life histories with indeterminate growth. Proc. Natl. Acad. Sci. U. S. A. 98, 9460–9464. 10.1073/pnas.161294498 PubMed DOI PMC

Cole T. J., Ahmed M., Preece A., Hindmarsh P., Dunger D. B. (2015). The relationship between insulin-like growth factor 1, sex steroids, and timing of the pubertal growth spurt. Clin. Endocrinol. 82, 862–869. 10.1111/cen.12682 PubMed DOI PMC

Core Team R. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL https://www.R-project.org/.

Coulson D. T. R., Brockbank S., Quinn J. G., Murphy S., Ravid R., Irvine G. B., et al. (2008). Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue. BMC Mol. Biol. 9, 46. 10.1186/1471-2199-9-46 PubMed DOI PMC

Cox R. M., Calsbeek R. (2010). Severe costs of reproduction persist in Anolis lizards despite the evolution of a single-egg clutch. Evolution 64, 1321–1330. 10.1111/j.1558-5646.2009.00906.x PubMed DOI

Cox R. M., Butler M., John-Alder H. (2007). “The evolution of sexual size dimorphism in reptiles,” in Sex, size and gender roles: Evolutionary studies of sexual size dimorphism. Editors Fairbairn D. J., Blanckenhorn W. U., Székely T. (Oxford, United Kingdom: Oxford University Press; ), 38–49. 10.1093/acprof:oso/9780199208784.003.0005 DOI

Cox R. M., Skelly S. L., John‐Alder H. B. (2005). Testosterone inhibits growth in juvenile male eastern fence lizards (Sceloporus undulatus): Implications for energy allocation and sexual size dimorphism. Physiol. Biochem. Zool. 78, 531–545. 10.1086/430226 PubMed DOI

Cox R. M., Stenquist D., Calsbeek R. (2009). Testosterone, growth and the evolution of sexual size dimorphism. J. Evol. Biol. 22, 1586–1598. 10.1111/j.1420-9101.(2009).01772.x PubMed DOI

Cox R. M. (2006). A test of the reproductive cost hypothesis for sexual size dimorphism in Yarrow’s spiny lizard Sceloporus jarrovii . J. Anim. Ecol. 7, 1361–1369. 10.1111/j.1365-2656.2006.01160.x PubMed DOI

Cox R. M. (2019). “Body size and sexual dimorphism,” in Encyclopedia of animal behavior. Editors Breed M., Moore J. (Oxford: Academic Press; ), 220–225. 10.1016/B978-0-08-045337-8.00117-0 DOI

Cox R. M., McGlothlin J. W., Bonier F. (2016). Evolutionary endocrinology: Hormones as mediators of evolutionary phenomena: An introduction to the symposium. Integr. Comp. Biol. 56, 121–125. 10.1093/icb/icw047 PubMed DOI

de Beer M., McMurtry J. P., Brocht D. M., Coon C. N. (2008). An examination of the role of feeding regimens in regulating metabolism during the broiler breeder grower Period. 2. Plasma Hormones and Metabolites. Poult. Sci. 87, 264–275. 10.3382/ps.2007-00196 PubMed DOI

Denley A., Cosgrove L. J., Booker G. W., Wallace J. C., Forbes B. E. (2005). Molecular interactions of the IGF system. Cytokine Growth Factor Rev. 16, 421–439. 10.1016/j.cytogfr.2005.04.004 PubMed DOI

Duncan C. A., Jetzt A. E., Cohick W. S., John-Alder H. B. (2015). Nutritional modulation of IGF1 in relation to growth and body condition in Sceloporus lizards. Gen. Comp. Endocrinol. 216, 116–124. 10.1016/j.ygcen.2015.02.009 PubMed DOI

Duncan C. A., Cohick W. S., John-Alder H. B. (2020). Testosterone reduces growth and hepatic IGF1 mRNA in a female-larger lizard, Sceloporus undulatus: Evidence of an evolutionary reversal in growth regulation. Integr. Org. Biol. 2, obaa036. 10.1093/iob/obaa036 PubMed DOI PMC

Farrell R. E. (2017). “Quality control for RNA preparations,” in RNA methodologies laboratory guide for isolation and characterization. Editor Farrell R. E.. 5th Edition (Cambridge, Massachusetts, United States: Academic Press; ), 167–185. 10.1016/C2015-0-04021-7 DOI

Fowke J. H., Matthews C. E., Yu E., Cai Q., Cohen S., Buchowski M. S., et al. (2010). Racial differences in the association between body mass index and serum IGF1, IGF2, and IGFBP3. Endocr. Relat. Cancer 17, 51–60. 10.1677/ERC-09-0023 PubMed DOI PMC

Frýdlová P., Mrzílková J., Šeremeta M., Křemen J., Dudák J., Žemlička J., et al. (2020). Determinate growth is predominant and likely ancestral in squamate reptiles. Proc. Royal Soc. B 287, 20202737. 10.1098/rspb.2020.2737 PubMed DOI PMC

Frýdlová P., Mrzílková J., Šeremeta M., Křemen J., Dudák J., Žemlička J., et al. (2019). Universality of indeterminate growth in lizards rejected: The micro-CT reveals contrasting timing of growth cartilage persistence in iguanas, agamas, and chameleons. Sci. Rep. 9, 18913. 10.1038/s41598-019-54573-5 PubMed DOI PMC

Geiger M., Forasiepi A. M., Koyabu D., Sánchez-Villagra M. R. (2014). Heterochrony and post-natal growth in mammals – An examination of growth plates in limbs. J. Evol. Biol. 27, 98–115. 10.1111/jeb.12279 PubMed DOI

Ghosh P., Dahms N. M., Kornfeld S. (2003). Mannose 6-phosphate receptors: New twists in the tale. Nat. Rev. Mol. Cell Biol. 4, 202–212. 10.1038/nrm1050 PubMed DOI

Golinski A., Kubička L., John-Alder H., Kratochvíl L. (2014). Elevated testosterone isrequired for male copulatory behavior and aggression in Madagascar ground gecko (Paroedura picta). Gen. Comp. Endocrinol. 205, 133–141. 10.1016/j.ygcen.2014.05.012 PubMed DOI

Gong H., Sun L., Chen B., Han Y., Pang J., Wu W., et al. (2016). Evaluation of candidate reference genes for RT-qPCR studies in three metabolism-related tissues of mice after caloric restriction. Sci. Rep. 6, 38513. 10.1038/srep38513 PubMed DOI PMC

Guillette L. J., Jr., Cox M. C., Crain D. A. (1996). Plasma insulin-like growth factor-I concentration during the reproductive cycle of the American alligator (Alligator mississippiensis). Gen. Comp. Endocrinol. 104, 116–122. 10.1006/gcen.1996.0147 PubMed DOI

Hall T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95–98.

Hara Y., Takeuchi M., Kageyama Y., Tatsumi K., Hibi M., Kiyonari H., et al. (2018). Madagascar ground gecko genome analysis characterizes asymmetric fates of duplicated genes. BMC Biol. 16, 40. 10.1186/s12915-018-0509-4 PubMed DOI PMC

Hara Y., Tatsumi K., Yoshida M., Kajikawa E., Kiyonari H., Kuraku S., et al. (2015). Optimizing and benchmarking de novo transcriptome sequencing: From library preparation to assembly evaluation. BMC Genomics 16, 977. 10.1186/s12864-015-2007-1 PubMed DOI PMC

Hariharan I. K., Wake D. B., Wake M. H. (2015). Indeterminate growth: Could it represent the ancestral condition? Cold Spring Harb. Perspect. Biol. 8, 019174. 10.1101/cshperspect.a019174 PubMed DOI PMC

Hayward A., Gillooly J. F. (2011). The cost of sex: Quantifying energetic investment in gamete production by males and females. PLoS One 6, e16557. 10.1371/journal.pone.0016557 PubMed DOI PMC

Heinlein C. A., Chang C. (2002). The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol. Endocrinol. 16, 2181–2187. 10.1210/me.(2002)-0070 PubMed DOI

Janzen F. J., Phillips P. C. (2006). Exploring the evolution of environmental sex determination, especially in reptiles. J. Evol. Biol. 19, 1775–1784. 10.1111/j.1420-9101.2006.01138.x PubMed DOI

Johnson Pokorná M., Kratochvíl L. (2016). What was the ancestral sex-determining mechanism in amniote vertebrates? Biol. Rev. Camb. Philos. Soc. 91, 1–12. 10.1111/brv.12156 PubMed DOI

Juul A., Skakkebæk N. E. (2019). Why do normal children have acromegalic levels of IGFI during puberty. J. Clin. Endocrinol. Metab. 104, 2770–2776. 10.1210/jc.2018-02099 PubMed DOI

Katona G., Vági B., Végvári Z., Liker A., Freckleton R. P., Bókony V., et al. (2021). Are evolutionary transitions in sexual size dimorphism related to sex determination in reptiles? J. Evol. Biol. 34, 594–603. 10.1111/jeb.13774 PubMed DOI

Komsta L. (2011). outliers: Tests for outliers. R package version 0.14. https://CRAN.R-project.org/package=outliers

Kostmann A., Kratochvíl L., Rovatsos M. (2021). Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc. Royal Soc. B 288, 20202139. 10.1098/rspb.2020.2139 PubMed DOI PMC

Kozłowski J. (1996). Optimal allocation of resources explains interspecific life-history patterns in animals with indeterminate growth. Proc. R. Soc. B 263, 559–566. 10.1098/rspb.1996.0084 DOI

Kubička L., Golinski A., John-Alder H., Kratochvíl L. (2013). Ontogeny of pronounced female-biased sexual size dimorphism in the Malaysian cat gecko (Aeluroscalabotes felinus: Squamata: Eublepharidae): A test of the role of testosterone in growth regulation. Gen. Comp. Endocrinol. 188, 183–188. 10.1016/j.ygcen.2013.03.016 PubMed DOI

Kubička L., Schořálková T., Červenka J., Kratochvíl L. (2017). Ovarian control of growth and sexual size dimorphism in a male-larger gecko. J. Exp. Biol. 220, 787–795. 10.1242/jeb.146597 PubMed DOI

Kubička L., Starostová Z., Kratochvíl L. (2015). Endogenous control of sexual size dimorphism: Gonadal androgens have neither direct nor indirect effect on male growth in a Madagascar ground gecko (Paroedura picta). Gen. Comp. Endocrinol. 224, 273–277. 10.1016/j.ygcen.2015.09.028 PubMed DOI

Kubička L., Tureček A., Kučera T., Kratochvíl L. (2022). Sex-specific growth arrest in a lizard. iScience 25, 104041. 10.1016/j.isci.2022.104041 PubMed DOI PMC

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408. 10.1006/meth.2001.1262 PubMed DOI

Lodjak J., Verhulst S. (2020). Insulin-like growth factor 1 of wild vertebrates in a life-history context. Mol. Cell. Endocrinol. 518, 110978. 10.1016/j.mce.2020.110978 PubMed DOI

Marks J. R., Beatty A. E., Schwartz T. S., Sorlin M., Lailvaux S. P. (2021). Expression of insulin-like growth factors depends on both mass and resource availability in female green anoles (Anolis carolinensis). J. Exp. Biol. 224, jeb242665. 10.1242/jeb.242665 PubMed DOI

Meinhardt U. J., Ho K. K. Y. (2007). Regulation of growth hormone action by gonadal steroids. Endocrinol. Metab. Clin. North Am. 36, 57–73. 10.1016/j.ecl.2006.11.009 PubMed DOI

Meter B., Starostová Z., Kubička L., Kratochvíl L. (2020). The limits of the energetical perspective: Life-history decisions in lizard growth. Evol. Ecol. 34, 469–481. 10.1007/s10682-020-10054-0 DOI

Moore F. L., Evans S. J. (1999). Steroid hormones use non-genomic mechanisms to control brain functions and behaviors: A review of evidence. Brain Behav. Evol. 54, 41–50. 10.1159/000006610 PubMed DOI

Ooms J. (2021). writexl: Export data frames to excel 'xlsx' format. R package version 1.4.0. https://CRAN.R-project.org/package=writexl

Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. 10.1093/nar/29.9.e45 PubMed DOI PMC

Plot V., Criscuolo F., Zahn S., Georges J. Y. (2012). Telomeres, age and reproduction in a long-lived reptile. PLoS One 7, e40855. 10.1371/journal.pone.0040855 PubMed DOI PMC

Racine H. L., Serrat M. A. (2020). The Actions of IGF1 in the growth plate and its role in postnatal bone elongation. Curr. Osteoporos. Rep. 18, 210–227. 10.1007/s11914-020-00570-x PubMed DOI PMC

Reding D. M., Addis E. A., Palacios M. G., Schwartz T. S., Bronikowski A. M. (2016). Insulin-like signaling (IIS) responses to temperature, genetic background, and growth variation in garter snakes with divergent life histories. Gen. Comp. Endocrinol. 233, 88–99. 10.1016/j.ygcen.2016.05.018 PubMed DOI

Revelle W. (2021). psych: Procedures for personality and psychological research. Illinois, USA: Northwestern University Evanston. Available at: https://CRAN.R-project.org/package=psych Version = 2.1.9 .

Rollings N., Friesen C. R., Sudyka J., Whittington C., Giraudeau M., Wilson M., et al. (2017). Telomere dynamics in a lizard with morph-specific reproductive investment and self-maintenance. Ecol. Evol. 7, 5163–5169. 10.1002/ece3.2712 PubMed DOI PMC

RStudio Team (2019). RStudio. Boston, MA: Integrated Development for R. RStudio, Inc. Available at: http://www.rstudio.com/ .

Sanger T., Seav S., Tokita M., Langerhans B., Ross L., Losos J., et al. (2014). The oestrogen pathway underlies the evolution of exaggerated male cranial shapes in anolis lizards. Proc. Royal Soc. B 281, 20140329. 10.1098/rspb.(2014).0329 PubMed DOI PMC

Schmidt I. U., Wakley G. K., Turner R. T. (2000). Effects of estrogen and progesterone on tibia histomorphometry in growing rats. Calcif. Tissue Int. 67, 47–52. 10.1007/s00223001096 PubMed DOI

Schořálková T., Kratochvíl L., Kubička L. (2018). To fight or mate? Hormonal control of sex recognition, male sexual behavior and aggression in the gecko lizard. Horm. Behav. 97, 18–24. 10.1016/j.yhbeh.2017.10.006 PubMed DOI

Schwartz T. S., Bronikowski A. M. (2016). Evolution and function of the insulin and insulin-like signaling network in ectothermic reptiles: Some answers and more questions. Integr. Comp. Biol. 56, 171–184. 10.1093/icb/icw046 PubMed DOI

Sievert C. (2020). Interactive web-based data visualization with r, plotly, and shiny. Chapman: Hall/CRC;

Sivaramakrishna Y., Amancha P. K., Siva Kumar N. (2009). Reptilian MPR 300 is also the IGFIIR: Cloning, sequencing and functional characterization of the IGFII binding domain. Int. J. Biol. 44, 435–440. 10.1016/j.ijbiomac.2009.03.004 PubMed DOI

Sparkman A. M., Byars D., Ford N. B., Bronikowski A. M. (2010). The Role of insulin-like growth Factor-1 (IGF1) in growth and reproduction in female Brown house snakes (Lamprophis fuliginosus). Gen. Comp. Endocrinol. 168, 408–414. 10.1016/j.ygcen.2010.05.006 PubMed DOI

Starostová Z., Kubička L., Golinski A., Kratochvíl L. (2013). Neither male gonadal androgens nor female reproductive costs drive development of sexual size dimorphism in lizards. J. Exp. Biol. 216, 1872–1880. 10.1242/jeb.079442 PubMed DOI

Starostová Z., Kubička L., Kratochvíl L. (2010). Macroevolutionary pattern of sexual size dimorphism in geckos corresponds to intraspecific temperature-induced variation. J. Evol. Biol. 23, 670–677. 10.1111/j.1420-9101.(2010).01933.x PubMed DOI

Stassen Q. E. M., Riemers F. M., Reijmerink H., Leegwater P. A. J., Penning P. C. (2015). Reference genes for reverse transcription quantitative PCR in canine brain tissue. BMC Res. Notes 8, 761. 10.1186/s13104-015-1628-4 PubMed DOI PMC

Sutter N. B., Bustamante C. D., Chase K., Gray M. M., Zhao K., Zhu L., et al. (2007). A single IGF1 allele is a major determinant of small size in dogs. Science 316, 112–115. 10.1126/science.1137045 PubMed DOI PMC

Taylor E. N., DeNardo D. F. (2005). Sexual size dimorphism and growth plasticity in snakes: An experiment on the Western diamond-backed rattlesnake (Crotalus atrox). J. Exp. Zool. A Comp. Exp. Biol. 303A, 598–607. 10.1002/jez.a.189 PubMed DOI

Todd E. V., Liu H., Muncaster S., Gemmell N. J. (2016). Bending genders: The biology of natural sex change in fish. Sex. Dev. 10, 223–241. 10.1159/000449297 PubMed DOI

Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034. 10.1186/gb-(2002)-3-7-research0034 PubMed DOI PMC

Wang H., Wen H., Li Y., Zhang H., Liu Y. (2018). Evaluation of potential reference genes for quantitative RT-PCR analysis in spotted sea bass (Lateolabrax maculatus) under normal and salinity stress conditions. PeerJ 6, e5631. 10.7717/peerj.5631 PubMed DOI PMC

Werner J., Sfakianakis N., Rendall A. D., Griebeler E. M. (2018). Energy intake functions and energy budgets of ectotherms and endotherms derived from their ontogenetic growth in body mass and timing of sexual maturation. J. Theor. Biol. 444, 83–92. 10.1016/j.jtbi.2018.02.007 PubMed DOI

Wickham H., Averick M., Bryan J., Chang W., D'Agostino McGowan L., François R., et al. (2019). Welcome to the tidyverse. J. Open Source Softw. 4, 1686. 10.21105/joss.01686 DOI

Wickham H., François R., Lionel H., Müller K. (2021). dplyr: A grammar of data manipulation. R package version 1.0.7. https://CRAN.R-project.org/package=dplyr

Wickham H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.

Wickham H. (2019). stringr: Simple, consistent wrappers for common string operations. R package version 1.4.0. https://CRAN.R-project.org/package=stringr

Yakar S., Werner H., Rosen C. J. (2018). Insulin-like growth factors: Actions on the skeleton. J. Mol. Endocrinol. 61, T115–T137. 10.1530/JME-17-0298 PubMed DOI PMC

Yamagishi G., Yoshida A., Kobayashi A., Park M. K. (2016). Molecular characterization of insulin from squamate reptiles reveals sequence diversity and possible adaptive evolution. Gen. Comp. Endocrinol. 225, 197–211. 10.1016/j.ygcen.2015.08.021 PubMed DOI

Zauner H., Begemann G., Marí-Beffa M., Meyer A. (2003). Differential regulation of Msx genes in the development of the gonopodium, an intromittent Organ, and of the ‘Sword, ’ a sexually selected trait of swordtail fishes (Xiphophorus). Evol. Dev. 5, 466–477. 10.1046/j.1525-142x.(2003).03053.x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...