Little if any role of male gonadal androgens in ontogeny of sexual dimorphism in body size and cranial casque in chameleons
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32060387
PubMed Central
PMC7021717
DOI
10.1038/s41598-020-59501-6
PII: 10.1038/s41598-020-59501-6
Knihovny.cz E-zdroje
- MeSH
- androgeny genetika metabolismus MeSH
- gonády metabolismus MeSH
- ještěři anatomie a histologie genetika růst a vývoj metabolismus MeSH
- kastrace MeSH
- lebka anatomie a histologie metabolismus MeSH
- pohlavní dimorfismus * MeSH
- testosteron genetika metabolismus MeSH
- velikost těla genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- androgeny MeSH
- testosteron MeSH
Proximate control of the development of sexual dimorphism is still hotly debated in reptiles. In some squamates, many male-typical exaggerated traits including body size were assumed to be controlled by masculinization by male gonadal androgens. We performed a manipulative experiment to test the importance of this mechanism in the development of pronounced sexual differences in body size and size of head casque in the chameleon Chamaeleo calyptratus. Castrated males attained male-typical body size highly deviating from the body size of control females. Ontogenetic allometries of casque size on head length revealed that sexes depart considerably in casque growth later in the ontogeny; however, castrated males still follow male-typical casque growth. Paradoxically, exogenous testosterone led in females to slight increase of casque size, which might reflect interference with the feminizing effects of female gonadal hormones. The results in males strongly suggest that masculinization by male gonadal androgens during growth is not required for the development of sexual dimorphism in body size and casque size in the chameleon. The ontogeny of sexually dimorphic body size and exaggerated traits in at least some squamates is likely controlled by other proximate mechanism, possibly by feminization by ovarian hormones.
Faculty of Science Charles University Department of Ecology Viničná 7 128 43 Prague 2 Czech Republic
Zobrazit více v PubMed
Kratochvíl L, Frynta D. Body size, male combat and the evolution of sexual dimorphism in eublepharid geckos (Squamata: Eublepharidae) Biol. J. Linn. Soc. Lond. 2002;76:303–314. doi: 10.1046/j.1095-8312.2002.00064.x. DOI
Cox RM, John-Alder HB. Testosterone has opposite effects on male growth in lizards (Sceloporus spp.) with opposite patterns of sexual size dimorphism. J. Exp. Biol. 2005;208:4679–4687. doi: 10.1242/jeb.01948. PubMed DOI
Cox RM, Stenquist DS, Calsbeek R. Testosterone, growth and the evolution of sexual size dimorphism. J. Evol. Biol. 2009;22:1586–1598. doi: 10.1111/j.1420-9101.2009.01772.x. PubMed DOI
Starostová Z, Kubička L, Kratochvíl L. Macroevolutionary pattern of sexual size dimorphism in geckos corresponds to intraspecific temperature-induced variation. J. Evol. Biol. 2010;23:670–677. doi: 10.1111/j.1420-9101.2010.01933.x. PubMed DOI
Cox RM, Calsbeek R. Severe costs of reproduction persist in Anolis lizards despite the evolution of a single-egg clutch. Evolution. 2010;64:1321–1330. doi: 10.1111/j.1558-5646.2009.00851.x. PubMed DOI
Bonnet X, et al. Which proximate factor determines sexual size dimorphism in tiger snakes? Biol. J. Linn. Soc. 2011;103:668–680. doi: 10.1111/j.1095-8312.2011.01633.x. DOI
Kubička L, Schořálková T, Červenk AJ, Kratochvíl L. Ovarian control of growth and sexual size dimorphism in a male-larger gecko. J. Exp. Biol. 2017;220:787–795. PubMed
Adkins-Regan, E. Hormones and Animal Social Behavior. (Princeton University Press 2005).
Golinski A, Kubička L, John-Alder H, Kratochvíl L. Elevated testosterone is required for male copulatory behavior and aggression in Madagascar ground gecko (Paroedura picta) Gen. Comp. Endocrinol. 2014;205:133–141. doi: 10.1016/j.ygcen.2014.05.012. PubMed DOI
Rhen T, Ross J, Crews D. Effects of testosterone on sexual behavior and morphology in adult female leopard geckos, Eublepharis macularius. Horm. Behav. 1999;36:119–128. doi: 10.1006/hbeh.1999.1530. PubMed DOI
Cox, R. M., Skelly, S. L., Leo, A. & John-Alder, H. B. Testosterone regulates sexually dimorphic coloration in the eastern fence lizard, Sceloporus undulatus. Copeia 597–608 (2005).
Schořálková T, Kratochvíl L, Kubička L. Female sexual attractiveness and sex recognition in leopard gecko: Males are indiscriminate courters. Horm. Behav. 2018;99:57–61. doi: 10.1016/j.yhbeh.2018.01.007. PubMed DOI
Schořálková T, Kratochvíl L, Kubička L. Temporal organization: A novel mechanism of hormonal control of male-typical sexual behavior in vertebrates. Physiol. Behav. 2017;170:151–156. doi: 10.1016/j.physbeh.2016.12.030. PubMed DOI
Schořálková T, Kratochvíl L, Kubička L. To fight or mate? Hormonal control of sex recognition, male sexual behavior and aggression in the gecko lizard. Horm. Behav. 2018;97:18–24. doi: 10.1016/j.yhbeh.2017.10.006. PubMed DOI
Starostová Z, Kubička L, Golinski A, Kratochvíl L. Neither male gonadal androgens nor female reproductive costs drive development of sexual size dimorphism in lizards. J. Exp. Biol. 2013;216:1872–1880. doi: 10.1242/jeb.079442. PubMed DOI
Kubička L, Starostová Z, Kratochvíl L. Endogenous control of sexual size dimorphism: Gonadal androgens have neither direct nor indirect effect on male growth in a Madagascar ground gecko (Paroedura picta) Gen. Comp. Endocrinol. 2015;224:273–277. doi: 10.1016/j.ygcen.2015.09.028. PubMed DOI
Kubička L, Golinski A, John-Alder H, Kratochvíl L. Ontogeny of pronounced female-biased sexual size dimorphism in the Malaysian cat gecko (Aeluroscalabotes felinus: Squamata: Eublepharidae): A test of the role of testosterone in growth regulation. Gen. Comp. Endocrinol. 2013;188:183–188. doi: 10.1016/j.ygcen.2013.03.016. PubMed DOI
Pollock NB, Feigin S, Drazenovic M, John-Alder HB. Sex hormones and the development of sexual size dimorphism: 5α-dihydrotestosterone inhibits growth in a female-larger lizard (Sceloporus undulatus) J. Exp. Biol. 2017;220:4068–4077. doi: 10.1242/jeb.166553. PubMed DOI
Cox CL, Hanninen AF, Reedy AM, Cox RM. Female anoles retain responsiveness to testosterone despite the evolution of androgen-mediated sexual dimorphism. Funct. Ecol. 2015;29:758–767. doi: 10.1111/1365-2435.12383. DOI
Darwin, C. R. The descent of man and selection in relation to sex. (John Murray 1871).
Measey GJ, Hopkins K, Tolley KA. Morphology, ornaments and performance in two chameleon ecomorphs: is the casque bigger than the bite? Zool. 2009;112:217–226. doi: 10.1016/j.zool.2008.09.005. PubMed DOI
Rieppel O. The skull and jaw adductor musculature in chameleons. Rev. Suisse Zool. 1981;88:433–445. doi: 10.5962/bhl.part.82383. DOI
Ligon JD, Thornhill R, Zuk M, Johnson K. Male-male competition, ornamentation and the role of testosterone in sexual selection in red jungle fowl. Anim. Behav. 1990;40:367–373. doi: 10.1016/S0003-3472(05)80932-7. DOI
Setchell JM, Jean Wickings E. Dominance, status signals and coloration in male mandrills (Mandrillus sphinx) Ethol. 2005;111:25–50. doi: 10.1111/j.1439-0310.2004.01054.x. DOI
Schmidt, W. Chamaeleo calyptratus, the Yemen Chameleon. (Natur und Tier – Verlag 2001).
Andrews RM, Donoghue S. Effects of temperature and moisture on embryonic diapause of the veiled chameleon (Chamaeleo calyptratus) J. Exp. Zool. Part. A. 2004;301:629–635. doi: 10.1002/jez.a.56. PubMed DOI
Andrews RM. Incubation temperature and sex ratio of the veiled chameleon (Chamaeleo calyptratus) J. Herpetol. 2005;39:515–518. doi: 10.1670/33-05N.1. DOI
Krysko K, Enge K, King F. The veiled chameleon Chamaeleo calyptratus: A new exotic lizard species in Florida. Fla. Scientist. 2004;67:249–253.
Kummrow MS, Gilman C, Mackie P, Smith DA, Mastromonaco GF. Noninvasive analysis of fecal reproductive hormone metabolites in female veiled chameleons (Chamaeleo calyptratus) by enzyme immunoassay. Zoo. Biol. 2010;30:95–115. PubMed
Diaz RE, Jr., et al. The veiled chameleon (Chamaeleo calyptratus Duméril and Duméril 1851): A model for studying reptile body plan development and evolution. Cold Spring Harb. Protoc. 2015;10:889–894. PubMed
Pinto, B. J. et al. The transcriptome of the veiled chameleon (Chamaeleo calyptratus): A resource for studying the evolution and development of vertebrates. Dev Dyn. 248, 702–708 (2019). PubMed
Andrews RM. Effects of incubation temperature on growth and performance of the veiled chameleon (Chamaeleo calyptratus) J. Exp. Zool. Part. A. 2008;309:435–446. doi: 10.1002/jez.470. PubMed DOI
Sosvorova L, Vitku J, Chlupacova T, Mohapl M, Hampl R. Determination of seven selected neuro- and immunomodulatory steroids in human cerebrospinal fluid and plasma using LC-MS/MS. Steroids. 2015;98:1–8. doi: 10.1016/j.steroids.2015.01.019. PubMed DOI
Sathyapalan T, et al. Androstenedione and testosterone levels correlate with in vitro fertilization rates in insulin-resistant women. BMJ Open. Diabetes Res. Care. 2017;5:e000387. doi: 10.1136/bmjdrc-2017-000387. PubMed DOI PMC
Hampl R, Putz Z, Stárka L. Radioimmunologic determination of dihydrotestosterone and its value in laboratory diagnosis (In Czech) Biochem. Clin. Bohemoslov. 1990;19:157–163.
St. Clair RC. Patterns of growth and sexual size dimorphism in two species of box turtles with environmental sex determination. Oecologia. 1998;115:501–507. doi: 10.1007/s004420050547. PubMed DOI
Kubička L, Kratochvíl L. First grow, then breed and finally get fat: hierarchical allocation to life-history traits in a lizard with invariant clutch size. Funct. Ecol. 2009;23:595–601. doi: 10.1111/j.1365-2435.2008.01518.x. DOI
Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 2011;65:23–35. doi: 10.1007/s00265-010-1029-6. DOI
Symonds MRE, Moussalli A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 2010;65:13–21. doi: 10.1007/s00265-010-1037-6. DOI
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/ (2013).
Norris, D. O. & Carr, J. A. Vertebrate endocrinology, 5 edition. (Academic Press 2013).
Zhou R, Bird IM, Dumesic DA, Abbott DH. Adrenal hyperandrogenism is induced by fetal androgen excess in a rhesus monkey model of polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2005;90:6630–6637. doi: 10.1210/jc.2005-0691. PubMed DOI PMC
Massetti F, Gomes V, Perera A, Rato C, Kaliontzopoulou A. Morphological and functional implications of sexual size dimorphism in the Moorish gecko, Tarentola mauritanica. Biol. J. Linn. Soc. 2017;122:197–209. doi: 10.1093/biolinnean/blx060. DOI
Kratochvíl L, Flegr J. Differences in the 2nd to 4th digit length ratio in humans reflect shifts along the common allometric line. Biol. Lett. 2009;5:643–646. doi: 10.1098/rsbl.2009.0346. PubMed DOI PMC
Pélabon C, et al. On the relationship between ontogenetic and static allometry. Am. Nat. 2013;181:195–212. doi: 10.1086/668820. PubMed DOI
Nielsen SV, Banks JL, Diaz RE, Jr., Trainor PA, Gamble T. Dynamic sex chromosomes in Old World chameleons (Squamata: Chamaeleonidae) J. Evol. Biol. 2018;31:484–490. doi: 10.1111/jeb.13242. PubMed DOI
Rovatsos M, et al. Evolution of karyotypes in chameleons. Genes. 2017;8:382. doi: 10.3390/genes8120382. PubMed DOI PMC