A comparative study of growth: different body weight trajectories in three species of the genus Eublepharis and their hybrids
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
29422546
PubMed Central
PMC5805741
DOI
10.1038/s41598-018-19864-3
PII: 10.1038/s41598-018-19864-3
Knihovny.cz E-zdroje
- MeSH
- chov MeSH
- druhová specificita MeSH
- hmotnostní křivka * MeSH
- hybridizace genetická genetika fyziologie MeSH
- ještěři růst a vývoj MeSH
- rozmnožování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
An extensive research effort is devoted to the evolution of life-histories and processes underlying the variation in adult body weight; however, in this regard, some animal taxa remain neglected. Here we report rates and timing of growth recorded in two wild-derived populations of a model lizard species, Eublepharis macularius (M, W), other two related species, i.e., E. angramainyu (A) and E. sp. (D), and their between-species hybrids. We detected clear differences among the examined species/populations, which can be interpreted in the terms of "fast - slow" continuum of life-history strategies. The mean asymptotic body size was the highest in A and further decreased in the following order: M, W, and D. In contrast, the growth rate showed an opposite pattern. Counter-intuitively, the largest species exhibited the slowest growth rates. The final body size was determined mainly by the inflexion point. This parameter reflecting the duration of exponential growth increased with mean asymptotic body size and easily overcompensated the effect of decreasing growth rates in larger species. Compared to the parental species, the F1 and backcross hybrids exhibited intermediate values of growth parameters. Thus, except for the case of the F2 hybrid of MxA, we failed to detect deleterious effects of hybridization in these animals with temperature sex determination.
Zobrazit více v PubMed
Clark TD, Wang T, Butler PJ, Frappell PB. Factorial scopes of cardio-metabolic variables remain constant with changes in body temperature in the varanid lizard. Varanus rosenbergi. American Journal of Physiology-Regulatory Integrative and Comparative Physiology. 2005;288:R992–R997. doi: 10.1152/ajpregu.00593.2004. PubMed DOI
Schmidt-Nielsen, K. Scaling: why is animal size so important? (Cambridge University Press, 1984).
West-Eberhard, M. J. Developmental plasticity and evolution. (Oxford Univ. Press, 2003).
Darwin, C. The descent of man and selection in relation to sex. 1. 1st edn, (Murray, 1871).
Boback, S. M. Body size evolution in snakes: Evidence from island populations. Copeia, 81–94, https://doi.org/10.1643/0045-8511(2003)003[0081:bseise]2.0.co;2 (2003).
Fairbairn DJ. Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annual Review of Ecology and Systematics. 1997;28:659–687. doi: 10.1146/annurev.ecolsys.28.1.659. DOI
Starck, J. M. & Ricklefs, R. E. Avian growth and development: evolution within the altricial-precocial spectrum. (Oxford University Press, 1998).
Guarino FM, Di Gia I, Sindaco R. Age and growth of the sand lizards (Lacerta agilis) from a high Alpine population of north-western Italy. Acta. Herpetologica. 2010;5:23–29.
Frynta D, et al. Ontogeny of sexual size dimorphism in monitor lizards: Males grow for a longer period, but not at a faster rate. Zoological Science. 2010;27:917–923. doi: 10.2108/zsj.27.917. PubMed DOI
Roitberg ES, Smirina EM. Age, body size and growth of Lacerta agilis boemica and L. strigata: A comparative study of two closely related lizard species based on skeletochronology. Herpetological Journal. 2006;16:133–148.
Haenel GJ, John-Alder HB. Experimental and demographic analyses of growth rate and sexual size dimorphism in a lizard. Sceloporus undulatus. Oikos. 2002;96:70–81. doi: 10.1034/j.1600-0706.2002.10915.x. DOI
Shine R, Charnov EL. Patterns of survival, growth, and maturation in snakes and lizards. American Naturalist. 1992;139:1257–1269. doi: 10.1086/285385. DOI
Dunham AE. Food availability as a proximate factor influencing individual growth rates in iguanid lizard Sceloporus merriami. Ecology. 1978;59:770–778. doi: 10.2307/1938781. DOI
Schoener, T. W. & Schoener, A. Estimating and interpreting body-size growth in some Anolis lizards. Copeia, 390–405, 10.2307/1443602 (1978).
Lester NP, Shuter BJ, Abrams PA. Interpreting the von Bertalanffy model of somatic growth in fishes: the cost of reproduction. Proceedings of the Royal Society B-Biological Sciences. 2004;271:1625–1631. doi: 10.1098/rspb.2004.2778. PubMed DOI PMC
Ali M, Nicieza A, Wootton RJ. Compensatory growth in fishes: a response to growth depression. Fish and Fisheries. 2003;4:147–190. doi: 10.1046/j.1467-2979.2003.00120.x. DOI
Dutta H. Growth in fishes. Gerontology. 1994;40:97–112. doi: 10.1159/000213581. PubMed DOI
Paloheimo JE, Dickie LM. Food and growth of fishes I. A growth curve derived from experimental data. Journal of the Fisheries Research Board of Canada. 1965;22:521. doi: 10.1139/f65-048. DOI
Parker RR, Larkin PA. A concept of growth in fishes. Journal of the Fisheries Research Board of Canada. 1959;16:721–745. doi: 10.1139/f59-052. DOI
Bertalanffy L. von. Untersuchungen über die Gesetzlichkeit des Wachstums. I. Allgemeine Grundlagen der Theorie; mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Arch. Entwicklungsmech. 1934;131:613–652. doi: 10.1007/BF00650112. PubMed DOI
West GB, Brown JH, Enquist BJ. A general model for ontogenetic growth. Nature. 2001;413:628–631. doi: 10.1038/35098076. PubMed DOI
Winsor CP. The Gompertz curve as a growth curve. Proceedings of the national academy of sciences. 1932;18:1–8. doi: 10.1073/pnas.18.1.1. PubMed DOI PMC
Bennett, P. M. & Owens, I. P. F. Evolutionary ecology of birds: life histories, mating systems, and extinction. 1st edn, (Oxford University Press, 2002).
Stearns SC. The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos. 1983;41:173–187. doi: 10.2307/3544261. DOI
Gaillard JM, et al. An analysis of demographic tactics in birds and mammals. Oikos. 1989;56:59–76. doi: 10.2307/3566088. DOI
Bielby J, et al. The fast-slow continuum in mammalian life history: An empirical reevaluation. American Naturalist. 2007;169:748–757. PubMed
Jones OR, et al. Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecology Letters. 2008;11:664–673. doi: 10.1111/j.1461-0248.2008.01187.x. PubMed DOI
Coomber P, Crews D, Gonzalez Lima F. Independent effects of incubation temperature and gonadal sex on the volume and metabolic capacity of brain nuclei in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination. Journal of Comparative Neurology. 1997;380:409–421. doi: 10.1002/(SICI)1096-9861(19970414)380:3<409::AID-CNE9>3.0.CO;2-6. PubMed DOI
Crews D, Coomber P, Baldwin R, Azad N, Gonzalez Lima F. Brain organization in a reptile lacking sex chromosomes: Effects of gonadectomy and exogenous testosterone. Hormones and Behavior. 1996;30:474–486. doi: 10.1006/hbeh.1996.0051. PubMed DOI
Crews D, Coomber P, Gonzalez Lima F. Effects of age and sociosexual experience on the morphology and metabolic capacity of brain nuclei in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination. Brain Research. 1997;758:169–179. doi: 10.1016/S0006-8993(97)00222-9. PubMed DOI
Flores DL, Crews D. Effect of hormonal manipulation on sociosexual behavior in adult female leopard geckos (Eublepharis macularius), a species with temperature-dependent sex determination. Hormones and Behavior. 1995;29:458–473. doi: 10.1006/hbeh.1995.1277. PubMed DOI
Landová E, Jančúchová-Lásková J, Musilová V, Kadochová S, Frynta D. Ontogenetic switch between alternative antipredatory strategies in the leopard gecko (Eublepharis macularius): defensive threat versus escape. Behavioral Ecology and Sociobiology. 2013;67:1113–1122. doi: 10.1007/s00265-013-1536-3. DOI
Landová E, Musilová V, Polák J, Sedláčková K, Frynta D. Antipredatory reaction of the leopard gecko Eublepharis macularius to snake predators. Current Zoology. 2016;62:439–450. doi: 10.1093/cz/zow050. PubMed DOI PMC
Kratochvíl L, Frynta D. Body size, male combat and the evolution of sexual dimorphism in eublepharid geckos (Squamata: Eublepharidae) Biological Journal of the Linnean Society. 2002;76:303–314. doi: 10.1046/j.1095-8312.2002.00064.x. DOI
Kratochvíl L, Frynta D. Body-size effect on egg size in eublepharid geckos (Squamata: Eublepharidae), lizards with invariant clutch size: negative allometry for egg size in ectotherms is not universal. Biological Journal of the Linnean Society. 2006;88:527–532. doi: 10.1111/j.1095-8312.2006.00627.x. DOI
Kratochvíl L, Frynta D. Egg shape and size allometry in geckos (Squamata: Gekkota), lizards with contrasting eggshell structure: why lay spherical eggs? Journal of Zoological Systematics and Evolutionary Research. 2006;44:217–222. doi: 10.1111/j.1439-0469.2005.00339.x. DOI
Kratochvíl L, Frynta D. Production-growth model applied in eublepharid lizards (Eublepharidae, Squamata): accordance between growth and metabolic rates. Folia Zoologica. 2003;52:317–322.
Starostová Z, Kratochvíl L, Frynta D. Dwarf and giant geckos from the cellular perspective: the bigger the animal, the bigger its erythrocytes? Functional Ecology. 2005;19:744–749. doi: 10.1111/j.1365-2435.2005.01020.x. DOI
Starostová Z, Kubička L, Konarzewski M, Kozlowski J, Kratochvíl L. Cell size but not genome size affects scaling of metabolic rate in eyelid geckos. American Naturalist. 2009;174:E100–E105. doi: 10.1086/603610. PubMed DOI
Starostová, Z., Konarzewski, M., Kozlowski, J. & Kratochvíl, L. Ontogeny of metabolic rate and red blood cell size in eyelid geckos: Species follow different paths. Plos One8, 10.1371/journal.pone.0064715 (2013). PubMed PMC
Montanari, S. R., Hobbs, J. P. A., Pratchett, M. S., Bay, L. K. & van Herwerden, L. Naturally occurring hybrids of coral reef butterflyfishes have similar fitness compared to parental species. Plos One12, 10.1371/journal.pone.0173212 (2017). PubMed PMC
Bartley DM, Rana K, Immink AJ. The use of inter-specific hybrids in aquaculture and fisheries. Reviews in Fish Biology and Fisheries. 2000;10:325–337. doi: 10.1023/A:1016691725361. DOI
Jančúchová-Lásková, J., Landová, E. & Frynta, D. Experimental crossing of two distinct species of leopard geckos, Eublepharis angramainyu and E. macularius: Viability, fertility and phenotypic variation of the hybrids. Plos One10, 10.1371/journal.pone.0143630 (2015). PubMed PMC
Burke JM, Arnold ML. Genetics and the fitness of hybrids. Annual Review of Genetics. 2001;35:31–52. doi: 10.1146/annurev.genet.35.102401.085719. PubMed DOI
Schilthuizen M, Giesbers M, Beukeboom LW. Haldane’s rule in the 21st century. Heredity. 2011;107:95–102. doi: 10.1038/hdy.2010.170. PubMed DOI PMC
Chen ZJ. Genomic and epigenetic insights into the molecular bases of heterosis. Nature Reviews Genetics. 2013;14:471–482. doi: 10.1038/nrg3503. PubMed DOI
Jančúchová-Lásková J, Landová E, Frynta D. Are genetically distinct lizard species able to hybridize? A review. Current Zoology. 2015;61:155–180. doi: 10.1093/czoolo/61.1.155. DOI
Mayr, E. Animal species and evolution. 1st edn, (The Belknap Press, 1963).
Abbott R, et al. Hybridization and speciation. Journal of Evolutionary Biology. 2013;26:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI
Dittrich-Reed DR, Fitzpatrick BM. Transgressive hybrids as hopeful monsters. Evolutionary Biology. 2013;40:310–315. doi: 10.1007/s11692-012-9209-0. PubMed DOI PMC
Willis PM. Why do animals hybridize? Acta Ethologica. 2013;16:127–134. doi: 10.1007/s10211-013-0144-6. DOI
de Verdal H, et al. Response to selection for growth in an interspecific hybrid between Oreochromis mossambicus and O. niloticus in two distinct environments. Aquaculture. 2014;430:159–165. doi: 10.1016/j.aquaculture.2014.03.051. DOI
Hatfield T, Schluter D. Ecological speciation in sticklebacks: Environment-dependent hybrid fitness. Evolution. 1999;53:866–873. doi: 10.1111/j.1558-5646.1999.tb05380.x. PubMed DOI
Rykena S. Experimental hybridization in green lizards (Lacerta s. str.), a tool to study species boundaries. Mertensiella. 2002;13:78–88.
Kratochvíl L, Kubička L. Why reduce clutch size to one or two eggs? Reproductive allometries reveal different evolutionary causes of invariant clutch size in lizards. Functional Ecology. 2007;21:171–177. doi: 10.1111/j.1365-2435.2006.01202.x. DOI
Lee RM. An investigation into the methods of growth determination in fishes by means of scales. ICES Journal of Marine Science. 1912;1:3–34. doi: 10.1093/icesjms/s1.63.3. DOI
Lee RM. Age and growth determination in fishes. Nature. 1920;106:49–51. doi: 10.1038/106049a0. DOI
Taylor IG, Methot RD. Hiding or dead? A computationally efficient model of selective fisheries mortality. Fisheries Research. 2013;142:75–85. doi: 10.1016/j.fishres.2012.08.021. DOI
Czerniejewski P, Rybczyk A, Tanski A, Keszka S, Antoszek A. Growth rate and condition ov Vimba, Vimba vimba (Actinopterygii: Cypriniformes: Cyprinidae), a species under restitution in the Odra river estuary. Acta Ichthyologica Et Piscatoria. 2011;41:215–222. doi: 10.3750/AIP2011.41.3.09. DOI
Fossen I, Albert OT, Nilssen EM. Back-calculated individual growth of long rough dab (Hippoglossoides platessoides) in the Barents Sea. Ices Journal of Marine Science. 1999;56:689–696. doi: 10.1006/jmsc.1999.0486. DOI
Walker TI, Taylor BL, Hudson RJ, Cottier JP. The phenomenon of apparent change of growth rate in gummy shark (Mustelus antarcticus) harvested off southern Australia. Fisheries Research. 1998;39:139–163. doi: 10.1016/S0165-7836(98)00180-5. DOI
Bradshaw SD. Growth and mortality in a field population of Amphibolurus lizards exposed to seasonal cold and aridity. Journal of Zoology. 1971;165:1–&. doi: 10.1111/j.1469-7998.1971.tb02174.x. DOI
Eklund J, Bradford GE. Longevity and lifetime body-weight in mice selected for rapid growth. Nature. 1977;265:48–49. doi: 10.1038/265048b0. PubMed DOI
Mangel M, Stamps J. Trade-offs between growth and mortality and the maintenance of individual variation in growth. Evolutionary Ecology Research. 2001;3:583–593.
Olsson M, Shine R. Growth to death in lizards. Evolution. 2002;56:1867–1870. doi: 10.1111/j.0014-3820.2002.tb00202.x. PubMed DOI
Frýdlová P, et al. Morphological characteristics of blood cells in monitor lizards: is erythrocyte size linked to actual body size? Integrative Zoology. 2013;8:39–45. doi: 10.1111/j.1749-4877.2012.00295.x. PubMed DOI
Lui JC, Baron J. Mechanisms limiting body growth in mammals. Endocrine Reviews. 2011;32:422–440. doi: 10.1210/er.2011-0001. PubMed DOI PMC
Cox, R. M. & John-Alder, H. B. Testosterone has opposite effects on male growth in lizards (Sceloporus spp.) with opposite patterns of sexual size dimorphism. Journal of Experimental Biology 208, 4679–4687, 10.1242/jeb.01948, 10.1111/j.1420-9101.2009.01772.x (2005). PubMed
Cox RM, Stenquist DS, Calsbeek R. Testosterone, growth and the evolution of sexual size dimorphism. Journal of Evolutionary Biology. 2009;22:1586–1598. doi: 10.1111/j.1420-9101.2009.01772.x. PubMed DOI
Starostova Z, Kubička L, Golinski A, Kratochvíl L. Neither male gonadal androgens nor female reproductive costs drive development of sexual size dimorphism in lizards. Journal of Experimental Biology. 2013;216:1872–1880. doi: 10.1242/jeb.079442. PubMed DOI
Kubička L, Golinski A, John-Alder H, Kratochvíl L. Ontogeny of pronounced female-biased sexual size dimorphism in the Malaysian cat gecko (Aeluroscalabotes felinus: Squamata: Eublepharidae): a test of the role of testosterone in growth regulation. General and Comparative Endocrinolology. 2013;188:183–188. doi: 10.1016/j.ygcen.2013.03.016. PubMed DOI
Kubička L, Starostova Z, Kratochvíl L. Endogenous control of sexual size dimorphism: Gonadal androgens have neither direct nor indirect effect on male growth in a Madagascar ground gecko (Paroedura picta) General and Comparative Endocrinolology. 2015;224:273–277. doi: 10.1016/j.ygcen.2015.09.028. PubMed DOI
Kubička L, Schořálková T, Červenka J, Kratochvíl L. Ovarian control of growth and sexual size dimorphism in a male-larger gecko. Journal of Experimental Biology. 2017;220(5):787–795. PubMed
Pfennig KS. Facultative mate choice drives adaptive hybridization. Science. 2007;318:965–967. doi: 10.1126/science.1146035. PubMed DOI
Bosworth B, Waldbieser G. General and specific combining ability of male blue catfish (Ictalurus furcatus) and female channel catfish (Ictalurus punctatus) for growth and carcass yield of their F1 hybrid progeny. Aquaculture. 2014;420:147–153. doi: 10.1016/j.aquaculture.2013.10.026. DOI
Yan BA, Wang ZH. Growth, salinity tolerance and microsatellite analysis of the F2 reciprocal hybrids of Oreochromis niloticus x Sarotherodon galilaeus at different salinities. Aquaculture Research. 2010;41:e336–e344. doi: 10.1111/j.1365-2109.2010.02542.x. DOI
Johnson, J. B., Macedo, D. C., Passow, C. N. & Rosenthal, G. G. Sexual ornaments, body morphology, and swimming performance in naturally hybridizing swordtails (Teleostei: Xiphophorus). Plos One9, 10.1371/journal.pone.0109025 (2014). PubMed PMC
Odierna G, et al. Evolutionary and biogeographical implications of the karyological variations in the oviparous and viviparous forms of the lizardLacerta (Zootoca) vivipara. Ecography. 2001;24:332–340. doi: 10.1111/j.1600-0587.2001.tb00206.x. DOI
Pokorná M, Kratochvíl L. Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zoological Journal of the Linnean Society. 2009;156:168–183. doi: 10.1111/j.1096-3642.2008.00481.x. DOI
Wagner E. Temperature-dependent sex determination in a gekko lizard. Quarterly Review of Biology. 1980;55:21.
Pokorná M, et al. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination. Chromosome Research. 2010;18:809–820. doi: 10.1007/s10577-010-9154-7. PubMed DOI
Dobzhansky TH. Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics. 1936;21:113. PubMed PMC
Dobzhansky, T. & Dobzhansky, T. G. Genetics and the Origin of Species(Vol. 11). (Columbia University Press, 1937).
Muller HJ. Isolating mechanisms, evolution and temperature. Biol. Symp. 1942;6:185–268.
Muller, H. J. Bearing of the Drosophila work on systematics. The new systematics, 185–268 (1940).
Turelli M, Orr HA. Dominance, epistasis and the genetics of postzygotic isolation. Genetics. 2000;154:1663–1679. PubMed PMC
Arnold, M. L. Natural hybridization and evolution. (Oxford University Press, 1997).
Starostová Z, Kratochvíl L, Flajšhans M. Cell size does not always correspond to genome size: Phylogenetic analysis in geckos questions optimal DNA theories of genome size evolution. Zoology. 2008;111:377–384. doi: 10.1016/j.zool.2007.10.005. PubMed DOI
Seufer, H., Kaverkin, j. & Kirschner, A. The eyelash geckos: care, breeding and natural history. (Kirschner und Seufer, 2005).
Anderson, S. C. The lizards of Iran. Society for the study of Amphibians and Reptiles. Contributions to Herpetology15 (1999).
Frynta D, et al. Results of the Czech Biological Expedition to Iran. Part 1. Notes on the distribution of amphibians and reptiles. Acta Societatis Zoologicae Bohemicae. 1997;61:3–17.
Bull JJ, Gutzke WHN, Bulmer MG. Nest choice in a captive lizard with temperature-dependent sex determination. Journal of Evolutionary Biology. 1988;1:177–184. doi: 10.1046/j.1420-9101.1988.1020177.x. DOI
Bragg WK, Fawcett JD, Bragg TB, Viets BE. Nest-site selection in two eublepharid gecko species with temperature-dependent sex determination and one with genotypic sex determination. Biological Journal of the Linnean Society. 2000;69:319–332. doi: 10.1111/j.1095-8312.2000.tb01208.x. DOI
Determinate growth is predominant and likely ancestral in squamate reptiles