P- and F-co-doped Carbon Nitride Nanocatalysts for Photocatalytic CO2 Reduction and Thermocatalytic Furanics Synthesis from Sugars

. 2020 Oct 07 ; 13 (19) : 5231-5238. [epub] 20200917

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32687261

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000754 Operational Program Research, Development and Education - European Regional Development Fund
CZ.02.1.01/0.0/0.0/15_003/0000416 Operational Program Research, Development and Education - European Regional Development Fund
Ministry of Education, Youth and Sports of the Czech Republic
FV20066 Ministry of Industry and Trade of the Czech Republic

A new P- and F-co-doped amorphous carbon nitride (PFCN) has been synthesized via sol-gel-mediated thermal condensation of dicyandiamide. Such synthesized P- and F-co-doped carbon nitride displayed a well-defined mesoporous nanostructure and enhanced visible light absorption region up to infrared with higher BET surface area of 260.93 m2 g-1 ; the highest recorded value for phosphorus-doped carbon nitride materials. Moreover, the formation mechanism is delineated and the role of templates was found to be essential not only in increasing the surface area but also in facilitating the co-doping of P and F atoms. Co-doping helped to narrow the optical band gap to 1.8 eV, thus enabling an excellent photocatalytic activity for the aqueous reduction of carbon dioxide into methanol under visible-light irradiation, which is fifteen times higher (119.56 μmol g-1 h-1 ) than the bare carbon nitride. P doping introduced Brønsted acidity into the material, turning it into an acid-base bifunctional catalyst. Consequently, the material was also investigated for the thermal conversion of common carbohydrates into furanics.

Zobrazit více v PubMed

W. Iqbal, B. Yang, X. Zhao, M. Rauf, M. Waqas, Y. Gong, J. Zhang, Y. Mao, Catal. Sci. Technol. 2018, 8, 4576-4599;

A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem. 2008, 18, 4893-4908.

Y. Gong, M. Li, H. Li, Y. Wang, Green Chem. 2015, 17, 715-736;

W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 2016, 116, 7159-7329;

J. Liu, H. Wang, M. Antonietti, Chem. Soc. Rev. 2016, 45, 2308-2326;

L. Zhou, H. Zhang, H. Sun, S. Liu, M. O. Tade, S. Wang, W. Jin, Catal. Sci. Technol. 2016, 6, 7002-7023;

N. Mansor, T. S. Miller, I. Dedigama, A. B. Jorge, J. Jia, V. Brázdová, C. Mattevi, C. Gibbs, D. Hodgson, P. R. Shearing, Electrochim. Acta 2016, 222, 44-57;

A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Nano-Micro Lett. 2017, 9, 47;

F. K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick, X. Wang, M. J. Bojdys, Nat. Rev. Mater. 2017, 2, 17030;

S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 2015, 27, 2150-2176.

J. Zhu, P. Xiao, H. Li, S. A. Carabineiro, ACS Appl. Mater. Interfaces 2014, 6, 16449-16465;

S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 2015, 27, 2150-2176.

L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Appl. Catal. B 2017, 217, 388-406.

H. Xu, J. Yan, X. She, L. Xu, J. Xia, Y. Xu, Y. Song, L. Huang, H. Li, Nanoscale 2014, 6, 1406-1415;

X. She, H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, H. Li, J. Mater. Chem. A 2014, 2, 2563-2570.

K. S. Lakhi, D.-H. Park, K. Al-Bahily, W. Cha, B. Viswanathan, J.-H. Choy, A. Vinu, Chem. Soc. Rev. 2017, 46, 72-101.

Y. Kang, Y. Yang, L. C. Yin, X. Kang, G. Liu, H. M. Cheng, Adv. Mater. 2015, 27, 4572-4577;

M. Z. Rahman, P. C. Tapping, T. W. Kee, R. Smernik, N. Spooner, J. Moffatt, Y. Tang, K. Davey, S. Z. Qiao, Adv. Funct. Mater. 2017, 27, 1702384.

A. B. Jorge, D. J. Martin, M. T. Dhanoa, A. S. Rahman, N. Makwana, J. Tang, A. Sella, F. Corà, S. Firth, J. A. Darr, J. Phys. Chem. C. 2013, 117, 7178-7185.

J. Ran, T. Y. Ma, G. Gao, X.-W. Du, S. Z. Qiao, Energ Environ. Sci. 2015, 8, 3708-3717.

X. Jin, V. V. Balasubramanian, S. T. Selvan, D. P. Sawant, M. A. Chari, G. e. Q. Lu, A. Vinu, Angew. Chem. Int. Ed. 2009, 48, 7884-7887;

Angew. Chem. 2009, 121, 8024-8027.

Z. Chen, Q. Zhang, W. Chen, J. Dong, H. Yao, X. Zhang, X. Tong, D. Wang, Q. Peng, C. Chen, Adv. Mater. 2018, 30, 1704720;

Z. Chen, E. Vorobyeva, S. Mitchell, E. Fako, M. A. Ortuño, N. López, S. M. Collins, P. A. Midgley, S. Richard, G. Vilé, Nat. Nanotechnol. 2018, 13, 702.

Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S. Z. Qiao, Energy Environ. Sci. 2012, 5, 6717-6731.

D.-H. Lan, H.-T. Wang, L. Chen, C.-T. Au, S.-F. Yin, Carbon 2016, 100, 81-89.

Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, X. Wang, Chem. Mater. 2010, 22, 5119-5121;

M. Xu, B. Chai, J. Yan, H. Wang, Z. Ren, K.-W. Paik, NANO 2016, 11, 1650137.

Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li, Angew. Chem. Int. Ed. 2010, 49, 3356-3359;

Angew. Chem. 2010, 122, 3428-3431;

H. Ma, Y. Li, S. Li, N. Liu, Appl. Surf. Sci. 2015, 357, 131-138;

L. Jiang, X. Yuan, G. Zeng, X. Chen, Z. Wu, J. Liang, J. Zhang, H. Wang, H. Wang, ACS Sustainable Chem. Eng. 2017, 5, 5831-5841;

P. Babu, S. Mohanty, B. Naik, K. Parida, ACS Appl. Energy Mater. 2018, 1, 5936-5947;

Y.-C. Lu, J. Chen, A.-J. Wang, N. Bao, J.-J. Feng, W. Wang, L. Shao, J. Mater. Chem. C 2015, 3, 73-78.

Y. Zhang, T. Mori, J. Ye, M. Antonietti, J. Am. Chem. Soc. 2010, 132, 6294-6295.

D. S. Simakov, Renewable Synthetic Fuels and Chemicals from Carbon Dioxide: Fundamentals, Catalysis, Design Considerations and Technological Challenges, Springer, 2017;

K. Li, B. Peng, T. Peng, ACS Catal. 2016, 6, 7485-7527;

H. Li, Q. Zhang, P. S Bhadury, S. Yang, Curr. Org. Chem. 2014, 18, 547-597.

Y. Zhou, W. Lin, H. Wang, Q. Li, J. Huang, M. Du, L. Lin, Y. Gao, L. Lin, N. He, Langmuir 2010, 27, 166-169.

Y. Cao, T. Mu, Ind. Eng. Chem. Res. 2014, 53, 8651-8664.

M. Gao, J. Feng, Z. Zhang, M. Gu, J. Wang, W. Zeng, Y. Lv, Y. Ren, T. Wei, Z. Fan, ACS Appl. Nano Mater. 2018, 1, 6733-6741.

S. Hu, L. Ma, J. You, F. Li, Z. Fan, F. Wang, D. Liu, J. Gui, RSC Adv. 2014, 4, 21657-21663.

S. Zhang, K. Dokko, M. Watanabe, Mater. Horiz. 2015, 2, 168-197.

X. Li, I. V. Sergeyev, F. Aussenac, A. F. Masters, T. Maschmeyer, J. M. Hook, Angew. Chem. Int. Ed. 2018, 57, 6848-6852;

Angew. Chem. 2018, 130, 6964-6968.

T. Zhang, I. P. A. F. Souza, J. Xu, V. C. Almeida, T. Asefa, Nanomaterials 2018, 8, 636.

H.-B. Fang, X.-H. Zhang, J. Wu, N. Li, Y.-Z. Zheng, X. Tao, Appl. Catal. B 2018, 225, 397-405.

F. R. Pomilla, A. Brunetti, G. Marcì, E. I. García-López, E. Fontananova, L. Palmisano, G. Barbieri, ACS Sustainable Chem. Eng. 2018, 6, 8743-8753;

J. Mao, T. Peng, X. Zhang, K. Li, L. Ye, L. Zan, Catal. Sci. Technol. 2013, 3, 1253-1260.

Q. Tay, P. Kanhere, C. F. Ng, S. Chen, S. Chakraborty, A. C. H. Huan, T. C. Sum, R. Ahuja, Z. Chen, Chem. Mater. 2015, 27, 4930-4933.

W. Che, W. Cheng, T. Yao, F. Tang, W. Liu, H. Su, Y. Huang, Q. Liu, J. Liu, F. Hu, Z. Pan, Z. Sun, S. Wei, J. Am. Chem. Soc. 2017, 139, 3021-3026;

H. Yaghoubi, Z. Li, Y. Chen, H. T. Ngo, V. R. Bhethanabotla, B. Joseph, S. Ma, R. Schlaf, A. Takshi, ACS Catal. 2015, 5, 327-335.

J.-Y. Tang, X. Y. Kong, B.-J. Ng, Y.-H. Chew, A. R. Mohamed, S.-P. Chai, Catal. Sci. Technol. 2019, 9, 2335.

F. Parveen, S. Upadhyayula, Fuel Process. Technol. 2017, 162, 30-36;

X. Cao, S. P. Teong, D. Wu, G. Yi, H. Su, Y. Zhang, Green Chem. 2015, 17, 2348-2352;

P. Zhao, Y. Zhang, Y. Wang, H. Cui, F. Song, X. Sun, L. Zhang, Green Chem. 2018, 20, 1551-1559.

S.-H. Chai, H.-P. Wang, Y. Liang, B.-Q. Xu, Green Chem. 2007, 9, 1130-1136.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...