A somatic multiple myeloma mutation unravels a mechanism of oligomerization-mediated product inhibition in GGPPS
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
1289067
Israel Cancer Research Fund
19202
Israel Cancer Research Fund
20230029
Israel Cancer Association
2023190
United States-Israel Binational Science Foundation
1653/21
Israel Science Foundation
CZ.02.01.01/00/22_008/0004624
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
40621901
PubMed Central
PMC12591569
DOI
10.1111/febs.70181
Knihovny.cz E-zdroje
- Klíčová slova
- GGPPS, multiple myeloma, oligomerization, structure–function,
- MeSH
- farnesyltranstransferasa * genetika chemie metabolismus antagonisté a inhibitory MeSH
- katalytická doména MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- mnohočetný myelom * genetika patologie enzymologie MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- mutace * MeSH
- nádorové buněčné linie MeSH
- prenylace proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- farnesyltranstransferasa * MeSH
Protein prenylation plays a critical role in regulating the cellular localization of small GTPases and is essential for multiple myeloma (MM) pathology. Geranylgeranyl diphosphate synthase (GGPPS), producing a key prenylation moiety, exists in a dimeric or hexameric form, depending on the species. However, the functional significance of this oligomerization remains unclear. Using crystallography, mass spectrometry, and fluorescence spectroscopy, we show that the GGPPSR235C mutant-found in the widely studied MM cell line RPMI-8226-exhibits weakened inter-dimer interactions, reduced hexamer stability, and increased apparent substrate affinity and product release kinetics. These effects are even more pronounced in a dimeric mutant, GGPPSY246D, demonstrating that interdimer interactions within the hexamer help stabilize a lid region over the active site, thereby stabilizing product binding in an inhibitory conformation. Together, these findings reveal that hexamerization regulates GGPPS activity through product inhibition and underscore the importance of cell line selection and characterization in drug discovery efforts.
BLAVATNIK CENTER for Drug Discovery Tel Aviv University Israel
Department of Biochemistry Faculty of Science Charles University Prague 2 Czech Republic
Division BioCeV Institute of Microbiology of the Czech Academy of Sciences Vestec Czech Republic
Zobrazit více v PubMed
Waller DD, Park J & Tsantrizos YS (2019) Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol 54, 41–60. PubMed
Xu N, Shen N, Wang XX, Jiang S, Xue B & Li CJ (2015) Protein prenylation and human diseases: a balance of protein farnesylation and geranylgeranylation. Sci China Life Sci 58, 328–335. PubMed
Palsuledesai CC & Distefano MD (2015) Protein prenylation: enzymes, therapeutics, and biotechnology applications. ACS Chem Biol 10, 51–62. PubMed PMC
Takai Y, Sasaki T & Matozaki T (2001) Small GTP‐binding proteins. Physiol Rev 81, 153–208. PubMed
Kavanagh KL, Dunford JE, Bunkoczi G, Russell RGG & Oppermann U (2006) The crystal structure of human geranylgeranyl pyrophosphate synthase reveals a novel hexameric arrangement and inhibitory product binding. J Biol Chem 281, 22004–22012. PubMed
Coxon FP, Helfrich MH, Van't Hof R, Sebti S, Ralston SH, Hamilton A & Rogers MJ (2000) Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI‐298. J Bone Miner Res 15, 1467–1476. PubMed
Guerra‐rodr M & Ferna L (2021) The mevalonate pathway, a metabolic target in cancer therapy. Front Oncol 11, 1–21. PubMed PMC
Park J, Matralis AN, Berghuis AM & Tsantrizos YS (2014) Human isoprenoid synthase enzymes as therapeutic targets. Front Chem 2, 1–21. PubMed PMC
Lu YP, Liu HG & Liang PH (2009) Different reaction mechanisms for cis‐ and trans‐prenyltransferases. Biochem Biophys Res Commun 379, 351–355. PubMed
Li Z‐H, Cintrón R, Koon NA & Moreno SNJ (2012) The N‐terminus and the chain‐length determination domain play a role in the length of the isoprenoid product of the bifunctional toxoplasma gondii farnesyl diphosphate synthase. Biochemistry 51, 7533–7540. PubMed PMC
Chang HY, Cheng TH & Wang AHJ (2021) Structure, catalysis, and inhibition mechanism of prenyltransferase. IUBMB Life 73, 40–63. PubMed PMC
Pham AC, Holstein SA & Borgstahl GEO (2024) Structural insight into geranylgeranyl diphosphate synthase (GGDPS) for cancer therapy. Mol Cancer Ther 23, 14–23. PubMed PMC
Kazandjian D (2016) Multiple myeloma epidemiology and survival: a unique malignancy. Semin Oncol 43, 676–681. PubMed PMC
Palumbo A & Anderson K (2011) Multiple myeloma. N Engl J Med 364, 1046–1060. PubMed
Wennerberg K, Rossman KL & Der CJ (2005) The ras superfamily at a glance. J Cell Sci 118, 843–846. PubMed
Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10, 513–525. PubMed
Hutagalung AH & Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91, 119–149. PubMed PMC
Haney SL, Chhonker YS, Varney ML, Talmon G, Murry DJ & Holstein SA (2018) Preclinical investigation of a potent geranylgeranyl diphosphate synthase inhibitor. Investig New Drugs 36, 810–818. PubMed PMC
Lacbay CM, Waller DD, Park J, Palou MG, Vincent F, Huang XF, Ta V, Berghuis AM, Sebag M & Tsantrizos YS (2018) Unraveling the prenylation‐cancer paradox in multiple myeloma with novel geranylgeranyl pyrophosphate synthase (GGPPS) inhibitors. J Med Chem 61, 6904–6917. PubMed
Holstein SA, Tong H & Hohl RJ (2010) Differential activities of thalidomide and isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells. Leuk Res 34, 344–351. PubMed PMC
Holstein SA & Hohl RJ (2011) Isoprenoid biosynthetic pathway inhibition disrupts monoclonal protein secretion and induces the unfolded protein response pathway in multiple myeloma cells. Leuk Res 35, 551–559. PubMed PMC
Haney SL, Varney ML, Williams JT, Smith LM, Talmon G & Holstein SA (2022) Geranylgeranyl diphosphate synthase inhibitor and proteasome inhibitor combination therapy in multiple myeloma. Exp Hematol Oncol 11, 5. PubMed PMC
Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR PubMed PMC
Luo J, Solimini NL & Elledge SJ (2009) Principles of cancer therapy: oncogene and non‐oncogene addiction. Cell 136, 823–837. PubMed PMC
Hanahan D & Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144, 646–674. PubMed
Abaan OD, Polley EC, Davis SR, Zhu YJ, Bilke S, Walker RL, Pineda M, Gindin Y, Jiang Y, Reinhold WC PubMed PMC
Lisnyansky M, Yariv E, Segal O, Marom M, Loewenstein A, Ben‐Tal N, Giladi M & Haitin Y (2019) Metal coordination is crucial for geranylgeranyl diphosphate synthase‐bisphosphonate interactions: a crystallographic and computational analysis. Mol Pharmacol 96, 580–588. PubMed
Aparicio A, Gardner A, Tu Y, Savage A, Berenson J & Lichtenstein A (1998) PubMed
Krissinel E & Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774–797. PubMed
Wallrapp FH, Pan J‐J, Ramamoorthy G, Almonacid DE, Hillerich BS, Seidel R, Patskovsky Y, Babbitt PC, Almo SC, Jacobson MP PubMed PMC
Lisnyansky M, Kapelushnik N, Ben‐Bassat A, Marom M, Loewenstein A, Khananshvili D, Giladi M & Haitin Y (2018) Reduced activity of geranylgeranyl diphosphate synthase mutant is involved in bisphosphonate‐induced atypical fractures. Mol Pharmacol 94, 1391–1400. PubMed
Giladi M, Bar‐El ML, Vaňková P, Ferofontov A, Melvin E, Alkaderi S, Kavan D, Redko B, Haimov E, Wiener R PubMed PMC
Teng KH, Chen APC, Kuo CJ, Li YC, Liu HG, Chen CT & Liang PH (2011) Fluorescent substrate analog for monitoring chain elongation by undecaprenyl pyrophosphate synthase in real time. Anal Biochem 417, 136–141. PubMed
Teng KH, Hsu ET, Chang YH, Lin SW & Liang PH (2016) Fluorescent farnesyl diphosphate analogue: a probe to validate trans‐Prenyltransferase inhibitors. Biochemistry 55, 4366–4374. PubMed
Konermann L, Pan J & Liu Y‐H (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 40, 1224–1234. PubMed
Hanahan D & Weinberg RA (2000) The hallmarks of cancer. Cell 100, 57–70. PubMed
Sahai E & Marshall CJ (2002) RHO–GTPases and cancer. Nat Rev Cancer 2, 133–142. PubMed
Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3, 11–22. PubMed
Mullen PJ, Yu R, Longo J, Archer MC & Penn LZ (2016) The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer 16, 718–731. PubMed
Gillet J‐P, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, Patel C, Orina JN, Eliseeva TA, Singal V PubMed PMC
Notarnicola M, Messa C, Cavallini A, Bifulco M, Tecce MF, Eletto D, Di Leo A, Montemurro S, Laezza C & Caruso MG (2004) Higher farnesyl diphosphate synthase activity in human colorectal cancer inhibition of cellular apoptosis. Oncology 67, 351–358. PubMed
Marianayagam NJ, Sunde M & Matthews JM (2004) The power of two: protein dimerization in biology. Trends Biochem Sci 29, 618–625. PubMed
Nishi H, Hashimoto K, Madej T & Panchenko AR (2013) Chapter one–evolutionary, physicochemical, and functional mechanisms of protein Homooligomerization. In Progress in Molecular Biology and Translational Science (Giraldo J & Ciruela F, eds), pp. 3–24. Academic Press, PubMed PMC
Gerhart JC & Pardee AB (1962) The enzymology of control by feedback inhibition. J Biol Chem 237, 891–896. PubMed
Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505, 131–143. PubMed PMC
Park J, Zielinski M, Magder A, Tsantrizos YS & Berghuis AM (2017) Human farnesyl pyrophosphate synthase is allosterically inhibited by its own product. Nat Commun 8, 14132. PubMed PMC
Liang PH, Ko TP & Wang AHJ (2002) Structure, mechanism and function of prenyltransferases. Eur J Biochem 269, 3339–3354. PubMed
Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66, 125–132. PubMed PMC
Strong M, Sawaya MR, Wang S, Phillips M, Cascio D & Eisenberg D (2006) Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from mycobacterium tuberculosis. Proc Natl Acad Sci USA 103, 8060–8065. PubMed PMC
McCoy AJ, Grosse‐Kunstleve RW, Adams PD, Winn MD, Storoni LC & Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40, 658–674. PubMed PMC
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ , Grosse‐Kunstleve RW PubMed PMC
Emsley P & Cowtan K (2004) Coot: model‐building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132. PubMed
Marty MT, Baldwin AJ, Marklund EG, Hochberg GKA, Benesch JLP & Robinson CV (2015) Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem 87, 4370–4376. PubMed PMC
Manori B, Vaknin A, Vaňková P, Nitzan A, Zaidel‐Bar R, Man P, Giladi M & Haitin Y (2024) Chloride intracellular channel (CLIC) proteins function as fusogens. Nat Commun 15, 2085. PubMed PMC
Yang M, Hoeppner M, Rey M, Kadek A, Man P & Schriemer DC (2015) Recombinant Nepenthesin II for hydrogen/deuterium exchange mass spectrometry. Anal Chem 87, 6681–6687. PubMed
Trcka F, Durech M, Vankova P, Chmelik J, Martinkova V, Hausner J, Kadek A, Marcoux J, Klumpler T, Vojtesek B PubMed PMC
Kavan D & Man P (2011) MSTools ‐ web based application for visualization and presentation of HXMS data. Int J Mass Spectrom 302, 53–58.
Niesen FH, Berglund H & Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2, 2212–2221. PubMed