Chloride intracellular channel (CLIC) proteins function as fusogens
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1721/16
Israel Science Foundation (ISF)
1653/21
Israel Science Foundation (ISF)
3308/20
Israel Science Foundation (ISF)
01214
Israel Cancer Research Fund (Israel Cancer Research Fund, Inc.)
19202
Israel Cancer Research Fund (Israel Cancer Research Fund, Inc.)
20230029
Israel Cancer Association (ICA)
CZ.1.05/1.1.00/02.0109
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky (Ministry of Education, Science, Research and Sport of the Slovak Republic)
731077
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
PubMed
38453905
PubMed Central
PMC10920813
DOI
10.1038/s41467-024-46301-z
PII: 10.1038/s41467-024-46301-z
Knihovny.cz E-zdroje
- MeSH
- Caenorhabditis elegans * genetika metabolismus MeSH
- chloridové kanály metabolismus MeSH
- chloridy * metabolismus MeSH
- liposomy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chloridové kanály MeSH
- chloridy * MeSH
- liposomy MeSH
Chloride Intracellular Channel (CLIC) family members uniquely transition between soluble and membrane-associated conformations. Despite decades of extensive functional and structural studies, CLICs' function as ion channels remains debated, rendering our understanding of their physiological role incomplete. Here, we expose the function of CLIC5 as a fusogen. We demonstrate that purified CLIC5 directly interacts with the membrane and induces fusion, as reflected by increased liposomal diameter and lipid and content mixing between liposomes. Moreover, we show that this activity is facilitated by acidic pH, a known trigger for CLICs' transition to a membrane-associated conformation, and that increased exposure of the hydrophobic inter-domain interface is crucial for this process. Finally, mutation of a conserved hydrophobic interfacial residue diminishes the fusogenic activity of CLIC5 in vitro and impairs excretory canal extension in C. elegans in vivo. Together, our results unravel the long-sought physiological role of these enigmatic proteins.
Zobrazit více v PubMed
Gururaja Rao S, Ponnalagu D, Patel NJ, Singh H. Three decades of chloride intracellular channel proteins: From organelle to organ physiology. Curr. Protoc. Pharmacol. 2018;80:11.21.1–11.21.17. PubMed PMC
Landry DW, Reitman M, Cragoe EJ, Al-Awqati Q. Epithelial chloride channel: Development of inhibitory ligands. J. Gen. Physiol. 1987;90:779–798. doi: 10.1085/jgp.90.6.779. PubMed DOI PMC
Landry DW, et al. Purification and reconstitution of chloride channels from kidney and trachea. Science. 1989;244:1469–1472. doi: 10.1126/science.2472007. PubMed DOI
Redhead CR, Edelman AE, Brown D, Landry DW, Al-Awqati Q. A ubiquitous 64-kDa protein is a component of a chloride channel of plasma and intracellular membranes. Proc. Natl. Acad. Sci. 1992;89:3716–3720. doi: 10.1073/pnas.89.9.3716. PubMed DOI PMC
Argenzio E, Moolenaar WH. Emerging biological roles of Cl- intracellular channel proteins. J. Cell Sci. 2016;129:4165–4174. doi: 10.1242/jcs.189795. PubMed DOI
Dulhunty A, Gage P, Curtis S, Chelvanayagam G, Board P. The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator. J. Biol. Chem. 2001;276:3319–3323. doi: 10.1074/jbc.M007874200. PubMed DOI
Harrop SJ, et al. Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A resolution. J. Biol. Chem. 2001;276:44993–45000. doi: 10.1074/jbc.M107804200. PubMed DOI
Cromer BA, et al. Structure of the janus protein human CLIC2. J. Mol. Biol. 2007;374:719–731. doi: 10.1016/j.jmb.2007.09.041. PubMed DOI
Littler DR, Brown LJ, Breit SN, Perrakis A, Curmi PMG. Structure of human CLIC3 at 2 Å resolution. Proteins Struct. Funct. Bioinforma. 2010;78:1594–1600. doi: 10.1002/prot.22675. PubMed DOI
Littler DR, et al. Crystal structure of the soluble form of the redox-regulated chloride ion channel protein CLIC4. FEBS J. 2005;272:4996–5007. doi: 10.1111/j.1742-4658.2005.04909.x. PubMed DOI
Ferofontov A, Strulovich R, Marom M, Giladi M, Haitin Y. Inherent flexibility of CLIC6 revealed by crystallographic and solution studies. Sci. Rep. 2018;8:6882. doi: 10.1038/s41598-018-25231-z. PubMed DOI PMC
Littler DR, et al. Comparison of vertebrate and invertebrate CLIC proteins: the crystal structures of Caenorhabditis elegans EXC-4 and Drosophila melanogaster DmCLIC. Proteins. 2008;71:364–378. doi: 10.1002/prot.21704. PubMed DOI
Ferofontov A, Vankova P, Man P, Giladi M, Haitin Y. Conserved cysteine dioxidation enhances membrane interaction of human Cl- intracellular channel 5. FASEB J. 2020;34:9925–9940. doi: 10.1096/fj.202000399R. PubMed DOI
Chou S-Y, et al. CLIC4 regulates apical exocytosis and renal tube luminogenesis through retromer- and actin-mediated endocytic trafficking. Nat. Commun. 2016;7:10412. doi: 10.1038/ncomms10412. PubMed DOI PMC
Valenzuela SM, et al. The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle. J. Physiol. 2000;529:541–52. doi: 10.1111/j.1469-7793.2000.00541.x. PubMed DOI PMC
Schlesinger PH, Blair HC, Teitelbaum SL, Edwards JC. Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J. Biol. Chem. 1997;272:18636–18643. doi: 10.1074/jbc.272.30.18636. PubMed DOI
Ulmasov B, Bruno J, Gordon N, Hartnett ME, Edwards JC. Chloride intracellular channel protein-4 functions in angiogenesis by supporting acidification of vacuoles along the intracellular tubulogenic pathway. Am. J. Pathol. 2009;174:1084–1096. doi: 10.2353/ajpath.2009.080625. PubMed DOI PMC
Tung JJ, Hobert O, Berryman M, Kitajewski J. Chloride intracellular channel 4 is involved in endothelial proliferation and morphogenesis in vitro. Angiogenesis. 2009;12:209–220. doi: 10.1007/s10456-009-9139-3. PubMed DOI PMC
Gagnon LH, et al. The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function. J. Neurosci. 2006;26:10188–10198. doi: 10.1523/JNEUROSCI.2166-06.2006. PubMed DOI PMC
Berry KL, Bulow HE, Hall DH, Hobert O. A C. elegans CLIC-like protein required for intracellular tube formation and maintenance. Science. 2003;302:2134–2137. doi: 10.1126/science.1087667. PubMed DOI
Berryman M, Bretscher A. Identification of a first member of the chloride intracellular channel gene family (CLIC5) that associates with the actin cytoskeleton of placental microvilli. Mol. Biol. Cell. 2000;11:1509–21. doi: 10.1091/mbc.11.5.1509. PubMed DOI PMC
Singh H, Cousin MA, Ashley RH. Functional reconstitution of mammalian ‘chloride intracellular channels’ CLIC1, CLIC4 and CLIC5 reveals differential regulation by cytoskeletal actin. FEBS J. 2007;274:6306–6316. doi: 10.1111/j.1742-4658.2007.06145.x. PubMed DOI
Berryman M, Bruno J, Price J, Edwards JC. CLIC-5A functions as a chloride channel in vitro and associates with the cortical actin cytoskeleton in vitro and in vivo. J. Biol. Chem. 2004;279:34794–801. doi: 10.1074/jbc.M402835200. PubMed DOI
Argenzio E, et al. CLIC4 regulates cell adhesion and β1 integrin trafficking. J. Cell Sci. 2014;127:5189–5203. PubMed
Hare JE, Goodchild SC, Breit SN, Curmi PMG, Brown LJ. Interaction of human chloride intracellular channel protein 1 (CLIC1) with lipid bilayers: a fluorescence study. Biochemistry. 2016;55:3825–3833. doi: 10.1021/acs.biochem.6b00080. PubMed DOI
Novarino G, et al. Involvement of the intracellular ion channel CLIC1 in microglia-mediated beta-amyloid-induced neurotoxicity. J. Neurosci. 2004;24:5322–5330. doi: 10.1523/JNEUROSCI.1170-04.2004. PubMed DOI PMC
Milton RH, et al. CLIC1 function is required for beta-amyloid-induced generation of reactive oxygen species by microglia. J. Neurosci. 2008;28:11488–11499. doi: 10.1523/JNEUROSCI.2431-08.2008. PubMed DOI PMC
Lecat S, Matthes HWD, Pepperkok R, Simpson JC, Galzi JL. A fluorescent live imaging screening assay based on translocation criteria identifies novel cytoplasmic proteins implicated in G protein-coupled receptor signaling pathways. Mol. Cell. Proteom. 2015;14:1385–1399. doi: 10.1074/mcp.M114.046698. PubMed DOI PMC
Ponsioen B, et al. Spatiotemporal regulation of chloride intracellular channel protein CLIC4 by RhoA. Mol. Biol. Cell. 2009;20:4664–4672. doi: 10.1091/mbc.e09-06-0529. PubMed DOI PMC
Shukla A, et al. TGF-β signalling is regulated by Schnurri-2-dependent nuclear translocation of CLIC4 and consequent stabilization of phospho-Smad2 and 3. Nat. Cell Biol. 2009;11:777–784. doi: 10.1038/ncb1885. PubMed DOI PMC
Malik M, et al. Inducible NOS-induced chloride intracellular channel 4 (CLIC4) nuclear translocation regulates macrophage deactivation. Proc. Natl. Acad. Sci. 2012;109:6130–6135. doi: 10.1073/pnas.1201351109. PubMed DOI PMC
Suh KS, et al. The organellular chloride channel protein CLIC4/mtCLIC translocates to the nucleus in response to cellular stress and accelerates apoptosis. J. Biol. Chem. 2004;279:4632–4641. doi: 10.1074/jbc.M311632200. PubMed DOI
Littler DR, et al. The enigma of the CLIC proteins: Ion channels, redox proteins, enzymes, scaffolding proteins? FEBS Lett. 2010;584:2093–2101. doi: 10.1016/j.febslet.2010.01.027. PubMed DOI
Goodchild SC, et al. Metamorphic response of the CLIC1 chloride intracellular ion channel protein upon membrane interaction. Biochemistry. 2010;49:5278–5289. doi: 10.1021/bi100111c. PubMed DOI
Goodchild SC, Angstmann CN, Breit SN, Curmi PMG, Brown LJ. Transmembrane extension and oligomerization of the CLIC1 chloride intracellular channel protein upon membrane interaction. Biochemistry. 2011;50:10887–10897. doi: 10.1021/bi2012564. PubMed DOI
Zhao H, Lappalainen P. A simple guide to biochemical approaches for analyzing protein-lipid interactions. Mol. Biol. Cell. 2012;23:2823–2830. doi: 10.1091/mbc.e11-07-0645. PubMed DOI PMC
Brouwer I, et al. Direct quantitative detection of Doc2b-induced hemifusion in optically trapped membranes. Nat. Commun. 2015;6:1–8. doi: 10.1038/ncomms9387. PubMed DOI PMC
Bridges D, Moorhead GBG. 14-3-3 proteins: a number of functions for a numbered protein. Sci. STKE. 2005;2005:re10–re10. doi: 10.1126/stke.2962005re10. PubMed DOI
Matsuzaki K, et al. Optical characterization of liposomes by right angle light scattering and turbidity measurement. Biochim. Biophys. Acta. 2000;1467:219–226. doi: 10.1016/S0005-2736(00)00223-6. PubMed DOI
Liu Y, Liu J. Zn2+ Induced Irreversible Aggregation, Stacking, and Leakage of Choline Phosphate Liposomes. Langmuir. 2017;33:14472–14479. doi: 10.1021/acs.langmuir.7b03209. PubMed DOI
Hoekstra D, de Boer T, Klappe K, Wilschut J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry. 1984;23:5675–5681. doi: 10.1021/bi00319a002. PubMed DOI
Warton K, et al. Recombinant CLIC1 (NCC27) assembles in lipid bilayers via a pH-dependent two-state process to form chloride ion channels with identical characteristics to those observed in Chinese hamster ovary cells expressing CLIC1. J. Biol. Chem. 2002;277:26003–26011. doi: 10.1074/jbc.M203666200. PubMed DOI
Adlakha J, Hong Z, Li P, Reinisch KM. Structural and biochemical insights into lipid transport by VPS13 proteins. J. Cell Biol. 2022;221:e202202030. doi: 10.1083/jcb.202202030. PubMed DOI PMC
Altstiel L, Branton D. Fusion of coated vesicles with lysosomes: Measurement with a fluorescence assay. Cell. 1983;32:921–929. doi: 10.1016/0092-8674(83)90077-6. PubMed DOI
Giladi M, Khananshvili D. Hydrogen-deuterium exchange mass-spectrometry of secondary active transporters: from structural dynamics to molecular mechanisms. Front. Pharmacol. 2020;11:70. doi: 10.3389/fphar.2020.00070. PubMed DOI PMC
Man P, et al. Defining the interacting regions between apomyoglobin and lipid membrane by hydrogen/deuterium exchange coupled to mass spectrometry. J. Mol. Biol. 2007;368:464–472. doi: 10.1016/j.jmb.2007.02.014. PubMed DOI
Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2007;2:2212–21. doi: 10.1038/nprot.2007.321. PubMed DOI
Buechner M, Hall DH, Bhatt H, Hedgecock EM. Cystic canal mutants in Caenorhabditis elegans are defective in the apical membrane domain of the renal (excretory) cell. Dev. Biol. 1999;214:227–241. doi: 10.1006/dbio.1999.9398. PubMed DOI
Arena AF, Escudero J, Shaye DD. A metazoan-specific C-terminal motif in EXC-4 and Gα-Rho/Rac signaling regulate cell outgrowth during tubulogenesis in C. elegans. Dev. Camb. Engl. 2022;149:dev200748. PubMed PMC
Khan LA, et al. Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux. Nat. Cell Biol. 2013;15:143–156. doi: 10.1038/ncb2656. PubMed DOI PMC
Zhang H, et al. Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis. Dev. Camb. Engl. 2012;139:2071–2083. PubMed PMC
Landry D, et al. Molecular cloning and characterization of p64, a chloride channel protein from kidney microsomes. J. Biol. Chem. 1993;268:14948–55. doi: 10.1016/S0021-9258(18)82424-3. PubMed DOI
Elter A, et al. A plant homolog of animal chloride intracellular channels (CLICs) generates an ion conductance in heterologous systems. J. Biol. Chem. 2007;282:8786–8792. doi: 10.1074/jbc.M607241200. PubMed DOI
Proutski I, Karoulias N, Ashley RH. Overexpressed chloride intracellular channel protein CLIC4 (p64H1) is an essential component of novel plasma membrane anion channels. Biochem. Biophys. Res. Commun. 2002;297:317–322. doi: 10.1016/S0006-291X(02)02199-X. PubMed DOI
Littler DR, et al. The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition. J. Biol. Chem. 2004;279:9298–9305. doi: 10.1074/jbc.M308444200. PubMed DOI
Segev N, Avinoam O, Podbilewicz B. Fusogens. Curr. Biol. 2018;28:R378–R380. doi: 10.1016/j.cub.2018.01.024. PubMed DOI
Hamilton BS, Whittaker GR, Daniel S. Influenza virus-mediated membrane fusion: Determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses. 2012;4:1144–1168. doi: 10.3390/v4071144. PubMed DOI PMC
Giladi M, et al. The C2B domain is the primary Ca2+ sensor in DOC2B: A structural and functional analysis. J. Mol. Biol. 2013;425:4629–4641. doi: 10.1016/j.jmb.2013.08.017. PubMed DOI
Tronchere H, Boal F. Liposome flotation assays for phosphoinositide-protein interaction. Bio-Protoc. 2017;7:e2169. doi: 10.21769/BioProtoc.2169. PubMed DOI PMC
Collaborative Computational Project, N. 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994). PubMed
McCoy AJ, et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC
Adams PD, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Chen VB, et al. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC
Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci. Publ. Protein Soc. 2000;9:1753–1773. doi: 10.1110/ps.9.9.1753. PubMed DOI PMC
Lu C, et al. OPLS4: improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 2021;17:4291–4300. doi: 10.1021/acs.jctc.1c00302. PubMed DOI
Trcka F, et al. Human stress-inducible Hsp70 has a high propensity to form ATP-dependent antiparallel dimers that are differentially regulated by cochaperone binding. Mol. Cell. Proteom. 2019;18:320–337. doi: 10.1074/mcp.RA118.001044. PubMed DOI PMC
Kavan D, Man P, MSTools - Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 2011;302:53–58. doi: 10.1016/j.ijms.2010.07.030. DOI
Perez-Riverol Y, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2021;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC