Structural basis for long-chain isoprenoid synthesis by cis-prenyltransferases
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35584224
PubMed Central
PMC9116609
DOI
10.1126/sciadv.abn1171
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Isoprenoids are synthesized by the prenyltransferase superfamily, which is subdivided according to the product stereoisomerism and length. In short- and medium-chain isoprenoids, product length correlates with active site volume. However, enzymes synthesizing long-chain products and rubber synthases fail to conform to this paradigm, because of an unexpectedly small active site. Here, we focused on the human cis-prenyltransferase complex (hcis-PT), residing at the endoplasmic reticulum membrane and playing a crucial role in protein glycosylation. Crystallographic investigation of hcis-PT along the reaction cycle revealed an outlet for the elongating product. Hydrogen-deuterium exchange mass spectrometry analysis showed that the hydrophobic active site core is flanked by dynamic regions consistent with separate inlet and outlet orifices. Last, using a fluorescence substrate analog, we show that product elongation and membrane association are closely correlated. Together, our results support direct membrane insertion of the elongating isoprenoid during catalysis, uncoupling active site volume from product length.
Blavatnik Center for Drug Discovery Tel Aviv University Tel Aviv 6997801 Israel
Sagol School of Neuroscience Tel Aviv University Tel Aviv 6997801 Israel
Zobrazit více v PubMed
Holstein S. A., Hohl R. J., Isoprenoids: Remarkable diversity of form and function. Lipids 39, 293–309 (2004). PubMed
Sacchettini J. C., Poulter C. D., Creating isoprenoid diversity. Science 277, 1788–1789 (1997). PubMed
Ogura K., Koyama T., Enzymatic aspects of isoprenoid chain elongation. Chem. Rev. 98, 1263–1276 (1998). PubMed
Liang P. H., Ko T. P., Wang A. H. J., Structure, mechanism and function of prenyltransferases. Eur. J. Biochem. 269, 3339–3354 (2002). PubMed
Chen C. C., Zhang L., Yu X., Ma L., Ko T. P., Guo R. T., Versatile cis-isoprenyl diphosphate synthase superfamily members in catalyzing carbon–carbon bond formation. ACS Catal. 10, 4717–4725 (2020).
Yamashita S., Takahashi S., Molecular mechanisms of natural rubber biosynthesis. Annu. Rev. Biochem. 89, 821–851 (2020). PubMed
Grabińska K. A., Park E. J., Sessa W. C., Cis-prenyltransferase: New insights into protein glycosylation, rubber synthesis, and human diseases. J. Biol. Chem. 291, 18582–18590 (2016). PubMed PMC
Liang P. H., Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry 48, 6562–6570 (2009). PubMed
Kharel Y., Takahashi S., Yamashita S., Koyama T., Manipulation of prenyl chain length determination mechanism of cis-prenyltransferases. FEBS J. 273, 647–657 (2006). PubMed
Takahashi S., Koyama T., Structure and function of cis-prenyl chain elongating enzymes. Chem. Rec. 6, 194–205 (2006). PubMed
Noike M., Ambo T., Kikuchi S., Suzuki T., Yamashita S., Takahashi S., Kurokawa H., Mahapatra S., Crick D. C., Koyama T., Product chain-length determination mechanism of Z,E-farnesyl diphosphate synthase. Biochem. Biophys. Res. Commun. 377, 17–22 (2008). PubMed PMC
Bar-El M. L., Vaňková P., Yeheskel A., Simhaev L., Engel H., Man P., Haitin Y., Giladi M., Structural basis of heterotetrameric assembly and disease mutations in the human cis-prenyltransferase complex. Nat. Commun. 11, 5273 (2020). PubMed PMC
Edani B. H., Grabinska K. A., Zhang R., Park E. J., Siciliano B., Surmacz L., Ha Y., Sessa W. C., Structural elucidation of the cis-prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation. Proc. Natl. Acad. Sci. U.S.A. 117, 20794–20802 (2020). PubMed PMC
Welti M., Regulation of dolichol-linked glycosylation. Glycoconj. J. 30, 51–56 (2013). PubMed
Harrison K. D., Park E. J., Gao N., Kuo A., Rush J. S., Waechter C. J., Lehrman M. A., Sessa W. C., Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation. EMBO J. 30, 2490–2500 (2011). PubMed PMC
Zelinger L., Banin E., Obolensky A., Mizrahi-Meissonnier L., Beryozkin A., Bandah-Rozenfeld D., Frenkel S., Ben-Yosef T., Merin S., Schwartz S. B., Cideciyan A. V., Jacobson S. G., Sharon D., A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am. J. Hum. Genet. 88, 207–215 (2011). PubMed PMC
Lam B. L., Züchner S. L., Dallman J., Wen R., Alfonso E. C., Vance J. M., Peričak-Vance M. A., Mutation K42E in dehydrodolichol diphosphate synthase (DHDDS) causes recessive retinitis pigmentosa. Adv. Exp. Med. Biol. 801, 165–170 (2014). PubMed
Hamdan F. F., Myers C. T., Cossette P., Lemay P., Spiegelman D., Laporte A. D., Nassif C., Diallo O., Monlong J., Cadieux-Dion M., Dobrzeniecka S., Meloche C., Retterer K., Cho M. T., Rosenfeld J. A., Bi W., Massicotte C., Miguet M., Brunga L., Regan B. M., Mo K., Tam C., Schneider A., Hollingsworth G.; Deciphering Developmental Disorders Study, FitzPatrick D. R., Donaldson A., Canham N., Blair E., Kerr B., Fry A. E., Thomas R. H., Shelagh J., Hurst J. A., Brittain H., Blyth M., Lebel R. R., Gerkes E. H., Davis-Keppen L., Stein Q., Chung W. K., Dorison S. J., Benke P. J., Fassi E., Corsten-Janssen N., Kamsteeg E. J., Mau-Them F. T., Bruel A. L., Verloes A., Õunap K., Wojcik M. H., Albert D. V. F., Venkateswaran S., Ware T., Jones D., Liu Y. C., Mohammad S. S., Bizargity P., Bacino C. A., Leuzzi V., Martinelli S., Dallapiccola B., Tartaglia M., Blumkin L., Wierenga K. J., Purcarin G., O’Byrne J. J., Stockler S., Lehman A., Keren B., Nougues M. C., Mignot C., Auvin S., Nava C., Hiatt S. M., Bebin M., Shao Y., Scaglia F., Lalani S. R., Frye R. E., Jarjour I. T., Jacques S., Boucher R. M., Riou E., Srour M., Carmant L., Lortie A., Major P., Diadori P., Dubeau F., D’Anjou G., Bourque G., Berkovic S. F., Sadleir L. G., Campeau P. M., Kibar Z., Lafrenière R. G., Girard S. L., Mercimek-Mahmutoglu S., Boelman C., Rouleau G. A., Scheffer I. E., Mefford H. C., Andrade D. M., Rossignol E., Minassian B. A., Michaud J. L., High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am. J. Hum. Genet. 101, 664–685 (2017). PubMed PMC
Piccolo G., Amadori E., Vari M. S., Marchese F., Riva A., Ghirotto V., Iacomino M., Salpietro V., Zara F., Striano P., Complex neurological phenotype associated with a de novo DHDDS mutation in a boy with intellectual disability, refractory epilepsy, and movement disorder. J. Pediatr. Genet. 10, 236–238 (2021). PubMed PMC
Galosi S., Edani B. H., Martinelli S., Hansikova H., Eklund E. A., Caputi C., Masuelli L., Corsten-Janssen N., Srour M., Oegema R., Bosch D. G. M., Ellis C. A., Amlie-Wolf L., Accogli A., Atallah I., Averdunk L., Barañano K. W., Bei R., Bagnasco I., Brusco A., Demarest S., Alaix A.-S., Di Bonaventura C., Distelmaier F., Elmslie F., Gan-Or Z., Good J.-M., Gripp K., Kamsteeg E.-J., Macnamara E., Marcelis C., Mercier N., Peeden J., Pizzi S., Pannone L., Shinawi M., Toro C., Verbeek N. E., Venkateswaran S., Wheeler P. G., Zdrazilova L., Zhang R., Zorzi G., Guerrini R., Sessa W. C., Lefeber D., Tartaglia M., Hamdan F. F., Grabińska K. A., Leuzzi V., De novo DHDDS variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus. Brain 145, 208–223 (2021). PubMed PMC
Courage C., Oliver K. L., Park E. J., Cameron J. M., Grabińska K. A., Muona M., Canafoglia L., Gambardella A., Said E., Afawi Z., Baykan B., Brandt C., di Bonaventura C., Chew H. B., Criscuolo C., Dibbens L. M., Castellotti B., Riguzzi P., Labate A., Filla A., Giallonardo A. T., Berecki G., Jackson C. B., Joensuu T., Damiano J. A., Kivity S., Korczyn A., Palotie A., Striano P., Uccellini D., Giuliano L., Andermann E., Scheffer I. E., Michelucci R., Bahlo M., Franceschetti S., Sessa W. C., Berkovic S. F., Lehesjoki A. E., Progressive myoclonus epilepsies—Residual unsolved cases have marked genetic heterogeneity including dolichol-dependent protein glycosylation pathway genes. Am. J. Hum. Genet. 108, 722–738 (2021). PubMed PMC
Park E. J., Grabińska K. A., Guan Z., Stránecký V., Hartmannová H., Hodaňová K., Barešová V., Sovová J., Jozsef L., Ondrušková N., Hansíková H., Honzík T., Zeman J., Hůlková H., Wen R., Kmoch S., Sessa W. C., Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab. 20, 448–457 (2014). PubMed PMC
Sabry S., Vuillaumier-Barrot S., Mintet E., Fasseu M., Valayannopoulos V., Héron D., Dorison N., Mignot C., Seta N., Chantret I., Dupré T., Moore S. E. H., A case of fatal type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet J. Rare Dis. 11, 1–14 (2016). PubMed PMC
Schwarz F., Aebi M., Mechanisms and principles of N-linked protein glycosylation. Curr. Opin. Struct. Biol. 21, 576–582 (2011). PubMed
Ma J., Ko T.-P., Yu X., Zhang L., Ma L., Zhai C., Guo R.-T., Liu W., Li H., Chen C.-C., Structural insights to heterodimeric cis-prenyltransferases through yeast dehydrodolichyl diphosphate synthase subunit Nus1. Biochem. Biophys. Res. Commun. 515, 621–626 (2019). PubMed
Bar-El M. L., Lee S. Y., Ki A. Y., Kapelushnik N., Loewenstein A., Chung K. Y., Schneidman-Duhovny D., Giladi M., Newman H., Haitin Y., Structural characterization of full-length human dehydrodolichyl diphosphate synthase using an integrative computational and experimental approach. Biomolecules 9, 660 (2019). PubMed PMC
Ko T. P., Chen Y. K., Robinson H., Tsai P. C., Gao Y. G., Chen A. P. C., Wang A. H. J., Liang P. H., Mechanism of product chain length determination and the role of a flexible loop in Escherichia coli undecaprenyl-pyrophosphate synthase catalysis. J. Biol. Chem. 276, 47474–47482 (2001). PubMed
Grabińska K. A., Edani B. H., Park E. J., Kraehling J. R., Sessa W. C., A conserved C-terminal RXG motif in the NgBR subunit of cis-prenyltransferase is critical for prenyltransferase activity. J. Biol. Chem. 292, 17351–17361 (2017). PubMed PMC
Chen Y. H., Chen A. P. C., Chen C. T., Wang A. H. J., Liang P. H., Probing the conformational change of Escherichia coli undecaprenyl pyrophosphate synthase during catalysis using an inhibitor and tryptophan mutants. J. Biol. Chem. 277, 7369–7376 (2002). PubMed
Phan R. M., Dale Poulter C., Synthesis of (S)-isoprenoid thiodiphosphates as substrates and inhibitors. J. Org. Chem. 66, 6705–6710 (2001). PubMed
Yan X., Maier C. S., Hydrogen/deuterium exchange mass spectrometry. Methods Mol. Biol. 492, 255–271 (2009). PubMed
Zhang Z., Smith D. L., Determination of amide hydrogen exchange by mass spectrometry: A new tool for protein structure elucidation. Protein Sci. 2, 522–531 (1993). PubMed PMC
Teng K. H., Chen A. P. C., Kuo C. J., Li Y. C., Liu H. G., Chen C. T., Liang P. H., Fluorescent substrate analog for monitoring chain elongation by undecaprenyl pyrophosphate synthase in real time. Anal. Biochem. 417, 136–141 (2011). PubMed
Wu P., Brand L., Resonance energy transfer: Methods and applications. Anal. Biochem. 218, 1–13 (1994). PubMed
Chang S. Y., Ko T. P., Liang P. H., Wang A. H. J., Catalytic mechanism revealed by the crystal structure of undecaprenyl pyrophosphate synthase in complex with sulfate, magnesium, and Triton. J. Biol. Chem. 278, 29298–29307 (2003). PubMed
Takahashi S., Lee H.-J., Yamashita S., Koyama T., Characterization of cis-prenyltransferases from the rubber producing plant Hevea brasiliensis heterologously expressed in yeast and plant cells. Plant Biotechnol. 29, 411–417 (2012).
Wen R., Lam B. L., Guan Z., Aberrant dolichol chain lengths as biomarkers for retinitis pigmentosa caused by impaired dolichol biosynthesis. J. Lipid Res. 54, 3516–3522 (2013). PubMed PMC
Kabsch W., XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 125–132 (2010). PubMed PMC
McCoy A. J., Grosse-Kunstleve R. W., Adams P. D., Winn M. D., Storoni L. C., Read R. J., Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007). PubMed PMC
Adams P. D., Afonine P. V., Bunkóczi G., Chen V. B., Davis I. W., Echols N., Headd J. J., Hung L. W., Kapral G. J., Grosse-Kunstleve R. W., McCoy A. J., Moriarty N. W., Oeffner R., Read R. J., Richardson D. C., Richardson J. S., Terwilliger T. C., Zwart P. H., PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 213–221 (2010). PubMed PMC
Emsley P., Cowtan K., Coot: Model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 2126–2132 (2004). PubMed
Chen V. B., Arendall W. B. III, Headd J. J., Keedy D. A., Immormino R. M., Kapral G. J., Murray L. W., Richardson J. S., Richardson D. C., MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010). PubMed PMC
Kadek A., Mrazek H., Halada P., Rey M., Schriemer D. C., Man P., Aspartic protease nepenthesin-1 as a tool for digestion in hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 86, 4287–4294 (2014). PubMed
Kavan D., Man P., MSTools—Web-based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 302, 53–58 (2011).
Trcka F., Durech M., Vankova P., Chmelik J., Martinkova V., Hausner J., Kadek A., Marcoux J., Klumpler T., Vojtesek B., Muller P., Man P., Human stress-inducible Hsp70 has a high propensity to form ATP-dependent antiparallel dimers that are differentially regulated by cochaperone binding. Mol. Cell. Proteomics 18, 320–337 (2019). PubMed PMC
Vankova P., Salido E., Timson D. J., Man P., Pey A. L., A dynamic core in human NQO1 controls the functional and stability effects of ligand binding and their communication across the enzyme dimer. Biomolecules 9, 728 (2019). PubMed PMC
Giladi M., Edri I., Goldenberg M., Newman H., Strulovich R., Khananshvili D., Haitin Y., Loewenstein A., Purification and characterization of human dehydrodolychil diphosphate synthase (DHDDS) overexpressed in E. coli. Protein Expr. Purif. 132, 138–142 (2017). PubMed
Edri I., Goldenberg M., Lisnyansky M., Strulovich R., Newman H., Loewenstein A., Khananshvili D., Gilad M., Haitin Y., Overexpression and purification of human cis-prenyltransferase in Escherichia coli. J. Vis. Exp. 2017, 56430 (2017). PubMed PMC
Fujii H., Koyama T., Ogura K., Efficient enzymatic hydrolysis of polyprenyl pyrophosphates. Biochim. Biophys. Acta 712, 716–718 (1982). PubMed
Hagn F., Nasr M. L., Wagner G., Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat. Protoc. 13, 79–98 (2018). PubMed PMC