Structural basis for long-chain isoprenoid synthesis by cis-prenyltransferases

. 2022 May 20 ; 8 (20) : eabn1171. [epub] 20220518

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35584224

Isoprenoids are synthesized by the prenyltransferase superfamily, which is subdivided according to the product stereoisomerism and length. In short- and medium-chain isoprenoids, product length correlates with active site volume. However, enzymes synthesizing long-chain products and rubber synthases fail to conform to this paradigm, because of an unexpectedly small active site. Here, we focused on the human cis-prenyltransferase complex (hcis-PT), residing at the endoplasmic reticulum membrane and playing a crucial role in protein glycosylation. Crystallographic investigation of hcis-PT along the reaction cycle revealed an outlet for the elongating product. Hydrogen-deuterium exchange mass spectrometry analysis showed that the hydrophobic active site core is flanked by dynamic regions consistent with separate inlet and outlet orifices. Last, using a fluorescence substrate analog, we show that product elongation and membrane association are closely correlated. Together, our results support direct membrane insertion of the elongating isoprenoid during catalysis, uncoupling active site volume from product length.

Zobrazit více v PubMed

Holstein S. A., Hohl R. J., Isoprenoids: Remarkable diversity of form and function. Lipids 39, 293–309 (2004). PubMed

Sacchettini J. C., Poulter C. D., Creating isoprenoid diversity. Science 277, 1788–1789 (1997). PubMed

Ogura K., Koyama T., Enzymatic aspects of isoprenoid chain elongation. Chem. Rev. 98, 1263–1276 (1998). PubMed

Liang P. H., Ko T. P., Wang A. H. J., Structure, mechanism and function of prenyltransferases. Eur. J. Biochem. 269, 3339–3354 (2002). PubMed

Chen C. C., Zhang L., Yu X., Ma L., Ko T. P., Guo R. T., Versatile cis-isoprenyl diphosphate synthase superfamily members in catalyzing carbon–carbon bond formation. ACS Catal. 10, 4717–4725 (2020).

Yamashita S., Takahashi S., Molecular mechanisms of natural rubber biosynthesis. Annu. Rev. Biochem. 89, 821–851 (2020). PubMed

Grabińska K. A., Park E. J., Sessa W. C., Cis-prenyltransferase: New insights into protein glycosylation, rubber synthesis, and human diseases. J. Biol. Chem. 291, 18582–18590 (2016). PubMed PMC

Liang P. H., Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry 48, 6562–6570 (2009). PubMed

Kharel Y., Takahashi S., Yamashita S., Koyama T., Manipulation of prenyl chain length determination mechanism of cis-prenyltransferases. FEBS J. 273, 647–657 (2006). PubMed

Takahashi S., Koyama T., Structure and function of cis-prenyl chain elongating enzymes. Chem. Rec. 6, 194–205 (2006). PubMed

Noike M., Ambo T., Kikuchi S., Suzuki T., Yamashita S., Takahashi S., Kurokawa H., Mahapatra S., Crick D. C., Koyama T., Product chain-length determination mechanism of Z,E-farnesyl diphosphate synthase. Biochem. Biophys. Res. Commun. 377, 17–22 (2008). PubMed PMC

Bar-El M. L., Vaňková P., Yeheskel A., Simhaev L., Engel H., Man P., Haitin Y., Giladi M., Structural basis of heterotetrameric assembly and disease mutations in the human cis-prenyltransferase complex. Nat. Commun. 11, 5273 (2020). PubMed PMC

Edani B. H., Grabinska K. A., Zhang R., Park E. J., Siciliano B., Surmacz L., Ha Y., Sessa W. C., Structural elucidation of the cis-prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation. Proc. Natl. Acad. Sci. U.S.A. 117, 20794–20802 (2020). PubMed PMC

Welti M., Regulation of dolichol-linked glycosylation. Glycoconj. J. 30, 51–56 (2013). PubMed

Harrison K. D., Park E. J., Gao N., Kuo A., Rush J. S., Waechter C. J., Lehrman M. A., Sessa W. C., Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation. EMBO J. 30, 2490–2500 (2011). PubMed PMC

Zelinger L., Banin E., Obolensky A., Mizrahi-Meissonnier L., Beryozkin A., Bandah-Rozenfeld D., Frenkel S., Ben-Yosef T., Merin S., Schwartz S. B., Cideciyan A. V., Jacobson S. G., Sharon D., A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am. J. Hum. Genet. 88, 207–215 (2011). PubMed PMC

Lam B. L., Züchner S. L., Dallman J., Wen R., Alfonso E. C., Vance J. M., Peričak-Vance M. A., Mutation K42E in dehydrodolichol diphosphate synthase (DHDDS) causes recessive retinitis pigmentosa. Adv. Exp. Med. Biol. 801, 165–170 (2014). PubMed

Hamdan F. F., Myers C. T., Cossette P., Lemay P., Spiegelman D., Laporte A. D., Nassif C., Diallo O., Monlong J., Cadieux-Dion M., Dobrzeniecka S., Meloche C., Retterer K., Cho M. T., Rosenfeld J. A., Bi W., Massicotte C., Miguet M., Brunga L., Regan B. M., Mo K., Tam C., Schneider A., Hollingsworth G.; Deciphering Developmental Disorders Study, FitzPatrick D. R., Donaldson A., Canham N., Blair E., Kerr B., Fry A. E., Thomas R. H., Shelagh J., Hurst J. A., Brittain H., Blyth M., Lebel R. R., Gerkes E. H., Davis-Keppen L., Stein Q., Chung W. K., Dorison S. J., Benke P. J., Fassi E., Corsten-Janssen N., Kamsteeg E. J., Mau-Them F. T., Bruel A. L., Verloes A., Õunap K., Wojcik M. H., Albert D. V. F., Venkateswaran S., Ware T., Jones D., Liu Y. C., Mohammad S. S., Bizargity P., Bacino C. A., Leuzzi V., Martinelli S., Dallapiccola B., Tartaglia M., Blumkin L., Wierenga K. J., Purcarin G., O’Byrne J. J., Stockler S., Lehman A., Keren B., Nougues M. C., Mignot C., Auvin S., Nava C., Hiatt S. M., Bebin M., Shao Y., Scaglia F., Lalani S. R., Frye R. E., Jarjour I. T., Jacques S., Boucher R. M., Riou E., Srour M., Carmant L., Lortie A., Major P., Diadori P., Dubeau F., D’Anjou G., Bourque G., Berkovic S. F., Sadleir L. G., Campeau P. M., Kibar Z., Lafrenière R. G., Girard S. L., Mercimek-Mahmutoglu S., Boelman C., Rouleau G. A., Scheffer I. E., Mefford H. C., Andrade D. M., Rossignol E., Minassian B. A., Michaud J. L., High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am. J. Hum. Genet. 101, 664–685 (2017). PubMed PMC

Piccolo G., Amadori E., Vari M. S., Marchese F., Riva A., Ghirotto V., Iacomino M., Salpietro V., Zara F., Striano P., Complex neurological phenotype associated with a de novo DHDDS mutation in a boy with intellectual disability, refractory epilepsy, and movement disorder. J. Pediatr. Genet. 10, 236–238 (2021). PubMed PMC

Galosi S., Edani B. H., Martinelli S., Hansikova H., Eklund E. A., Caputi C., Masuelli L., Corsten-Janssen N., Srour M., Oegema R., Bosch D. G. M., Ellis C. A., Amlie-Wolf L., Accogli A., Atallah I., Averdunk L., Barañano K. W., Bei R., Bagnasco I., Brusco A., Demarest S., Alaix A.-S., Di Bonaventura C., Distelmaier F., Elmslie F., Gan-Or Z., Good J.-M., Gripp K., Kamsteeg E.-J., Macnamara E., Marcelis C., Mercier N., Peeden J., Pizzi S., Pannone L., Shinawi M., Toro C., Verbeek N. E., Venkateswaran S., Wheeler P. G., Zdrazilova L., Zhang R., Zorzi G., Guerrini R., Sessa W. C., Lefeber D., Tartaglia M., Hamdan F. F., Grabińska K. A., Leuzzi V., De novo DHDDS variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus. Brain 145, 208–223 (2021). PubMed PMC

Courage C., Oliver K. L., Park E. J., Cameron J. M., Grabińska K. A., Muona M., Canafoglia L., Gambardella A., Said E., Afawi Z., Baykan B., Brandt C., di Bonaventura C., Chew H. B., Criscuolo C., Dibbens L. M., Castellotti B., Riguzzi P., Labate A., Filla A., Giallonardo A. T., Berecki G., Jackson C. B., Joensuu T., Damiano J. A., Kivity S., Korczyn A., Palotie A., Striano P., Uccellini D., Giuliano L., Andermann E., Scheffer I. E., Michelucci R., Bahlo M., Franceschetti S., Sessa W. C., Berkovic S. F., Lehesjoki A. E., Progressive myoclonus epilepsies—Residual unsolved cases have marked genetic heterogeneity including dolichol-dependent protein glycosylation pathway genes. Am. J. Hum. Genet. 108, 722–738 (2021). PubMed PMC

Park E. J., Grabińska K. A., Guan Z., Stránecký V., Hartmannová H., Hodaňová K., Barešová V., Sovová J., Jozsef L., Ondrušková N., Hansíková H., Honzík T., Zeman J., Hůlková H., Wen R., Kmoch S., Sessa W. C., Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab. 20, 448–457 (2014). PubMed PMC

Sabry S., Vuillaumier-Barrot S., Mintet E., Fasseu M., Valayannopoulos V., Héron D., Dorison N., Mignot C., Seta N., Chantret I., Dupré T., Moore S. E. H., A case of fatal type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet J. Rare Dis. 11, 1–14 (2016). PubMed PMC

Schwarz F., Aebi M., Mechanisms and principles of N-linked protein glycosylation. Curr. Opin. Struct. Biol. 21, 576–582 (2011). PubMed

Ma J., Ko T.-P., Yu X., Zhang L., Ma L., Zhai C., Guo R.-T., Liu W., Li H., Chen C.-C., Structural insights to heterodimeric cis-prenyltransferases through yeast dehydrodolichyl diphosphate synthase subunit Nus1. Biochem. Biophys. Res. Commun. 515, 621–626 (2019). PubMed

Bar-El M. L., Lee S. Y., Ki A. Y., Kapelushnik N., Loewenstein A., Chung K. Y., Schneidman-Duhovny D., Giladi M., Newman H., Haitin Y., Structural characterization of full-length human dehydrodolichyl diphosphate synthase using an integrative computational and experimental approach. Biomolecules 9, 660 (2019). PubMed PMC

Ko T. P., Chen Y. K., Robinson H., Tsai P. C., Gao Y. G., Chen A. P. C., Wang A. H. J., Liang P. H., Mechanism of product chain length determination and the role of a flexible loop in Escherichia coli undecaprenyl-pyrophosphate synthase catalysis. J. Biol. Chem. 276, 47474–47482 (2001). PubMed

Grabińska K. A., Edani B. H., Park E. J., Kraehling J. R., Sessa W. C., A conserved C-terminal RXG motif in the NgBR subunit of cis-prenyltransferase is critical for prenyltransferase activity. J. Biol. Chem. 292, 17351–17361 (2017). PubMed PMC

Chen Y. H., Chen A. P. C., Chen C. T., Wang A. H. J., Liang P. H., Probing the conformational change of Escherichia coli undecaprenyl pyrophosphate synthase during catalysis using an inhibitor and tryptophan mutants. J. Biol. Chem. 277, 7369–7376 (2002). PubMed

Phan R. M., Dale Poulter C., Synthesis of (S)-isoprenoid thiodiphosphates as substrates and inhibitors. J. Org. Chem. 66, 6705–6710 (2001). PubMed

Yan X., Maier C. S., Hydrogen/deuterium exchange mass spectrometry. Methods Mol. Biol. 492, 255–271 (2009). PubMed

Zhang Z., Smith D. L., Determination of amide hydrogen exchange by mass spectrometry: A new tool for protein structure elucidation. Protein Sci. 2, 522–531 (1993). PubMed PMC

Teng K. H., Chen A. P. C., Kuo C. J., Li Y. C., Liu H. G., Chen C. T., Liang P. H., Fluorescent substrate analog for monitoring chain elongation by undecaprenyl pyrophosphate synthase in real time. Anal. Biochem. 417, 136–141 (2011). PubMed

Wu P., Brand L., Resonance energy transfer: Methods and applications. Anal. Biochem. 218, 1–13 (1994). PubMed

Chang S. Y., Ko T. P., Liang P. H., Wang A. H. J., Catalytic mechanism revealed by the crystal structure of undecaprenyl pyrophosphate synthase in complex with sulfate, magnesium, and Triton. J. Biol. Chem. 278, 29298–29307 (2003). PubMed

Takahashi S., Lee H.-J., Yamashita S., Koyama T., Characterization of cis-prenyltransferases from the rubber producing plant Hevea brasiliensis heterologously expressed in yeast and plant cells. Plant Biotechnol. 29, 411–417 (2012).

Wen R., Lam B. L., Guan Z., Aberrant dolichol chain lengths as biomarkers for retinitis pigmentosa caused by impaired dolichol biosynthesis. J. Lipid Res. 54, 3516–3522 (2013). PubMed PMC

Kabsch W., XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 125–132 (2010). PubMed PMC

McCoy A. J., Grosse-Kunstleve R. W., Adams P. D., Winn M. D., Storoni L. C., Read R. J., Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007). PubMed PMC

Adams P. D., Afonine P. V., Bunkóczi G., Chen V. B., Davis I. W., Echols N., Headd J. J., Hung L. W., Kapral G. J., Grosse-Kunstleve R. W., McCoy A. J., Moriarty N. W., Oeffner R., Read R. J., Richardson D. C., Richardson J. S., Terwilliger T. C., Zwart P. H., PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 213–221 (2010). PubMed PMC

Emsley P., Cowtan K., Coot: Model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 2126–2132 (2004). PubMed

Chen V. B., Arendall W. B. III, Headd J. J., Keedy D. A., Immormino R. M., Kapral G. J., Murray L. W., Richardson J. S., Richardson D. C., MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010). PubMed PMC

Kadek A., Mrazek H., Halada P., Rey M., Schriemer D. C., Man P., Aspartic protease nepenthesin-1 as a tool for digestion in hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 86, 4287–4294 (2014). PubMed

Kavan D., Man P., MSTools—Web-based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 302, 53–58 (2011).

Trcka F., Durech M., Vankova P., Chmelik J., Martinkova V., Hausner J., Kadek A., Marcoux J., Klumpler T., Vojtesek B., Muller P., Man P., Human stress-inducible Hsp70 has a high propensity to form ATP-dependent antiparallel dimers that are differentially regulated by cochaperone binding. Mol. Cell. Proteomics 18, 320–337 (2019). PubMed PMC

Vankova P., Salido E., Timson D. J., Man P., Pey A. L., A dynamic core in human NQO1 controls the functional and stability effects of ligand binding and their communication across the enzyme dimer. Biomolecules 9, 728 (2019). PubMed PMC

Giladi M., Edri I., Goldenberg M., Newman H., Strulovich R., Khananshvili D., Haitin Y., Loewenstein A., Purification and characterization of human dehydrodolychil diphosphate synthase (DHDDS) overexpressed in E. coli. Protein Expr. Purif. 132, 138–142 (2017). PubMed

Edri I., Goldenberg M., Lisnyansky M., Strulovich R., Newman H., Loewenstein A., Khananshvili D., Gilad M., Haitin Y., Overexpression and purification of human cis-prenyltransferase in Escherichia coli. J. Vis. Exp. 2017, 56430 (2017). PubMed PMC

Fujii H., Koyama T., Ogura K., Efficient enzymatic hydrolysis of polyprenyl pyrophosphates. Biochim. Biophys. Acta 712, 716–718 (1982). PubMed

Hagn F., Nasr M. L., Wagner G., Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat. Protoc. 13, 79–98 (2018). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...