-
Je něco špatně v tomto záznamu ?
A predictive model for progression to clinical arthritis in at-risk individuals with arthralgia based on lymphocyte subsets and ACPA
K. Prajzlerová, O. Kryštůfková, N. Kaspříková, N. Růžičková, H. Hulejová, P. Hánová, J. Vencovský, L. Šenolt, M. Filková
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
NU22-05-00226
At-Risk of Rheumatoid Arthritis
NLK
Free Medical Journals
od 1996 do Před 1 rokem
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1999-01-01 do Před 1 rokem
- MeSH
- artralgie * imunologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- podskupiny lymfocytů * imunologie MeSH
- prediktivní hodnota testů MeSH
- progrese nemoci * MeSH
- protilátky proti citrulinovaným peptidům * krev imunologie MeSH
- revmatoidní artritida * imunologie krev MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The presence of ACPA significantly increases the risk of developing RA. Dysregulation of lymphocyte subpopulations was previously described in RA. Our objective was to propose the predictive model for progression to clinical arthritis based on peripheral lymphocyte subsets and ACPA in individuals who are at risk of RA. METHODS: Our study included 207 at-risk individuals defined by the presence of arthralgias and either additional ACPA positivity or meeting the EULAR definition for clinically suspect arthralgia. For the construction of predictive models, 153 individuals with symptom duration ≥12 months who have not yet progressed to arthritis were included. The lymphocyte subsets were evaluated using flow cytometry and anti-CCP using ELISA. RESULTS: Out of all individuals with arthralgia, 41 progressed to arthritis. A logistic regression model with baseline peripheral blood lymphocyte subpopulations and ACPA as predictors was constructed. The resulting predictive model showed that high anti-CCP IgG, higher percentage of CD4+ T cells, and lower percentage of T and NK cells increased the probability of arthritis development. Moreover, the proposed classification decision tree showed that individuals having both high anti-CCP IgG and low NK cells have the highest risk of developing arthritis. CONCLUSIONS: We propose a predictive model based on baseline levels of lymphocyte subpopulations and ACPA to identify individuals with arthralgia with the highest risk of progression to clinical arthritis. The final model includes T cells and NK cells, which are involved in the pathogenesis of RA. This preliminary model requires further validation in larger at-risk cohorts.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25003705
- 003
- CZ-PrNML
- 005
- 20250206104629.0
- 007
- ta
- 008
- 250121s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/rheumatology/keae383 $2 doi
- 035 __
- $a (PubMed)39120892
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Prajzlerová, Klára $u Institute of Rheumatology, Prague, Czech Republic
- 245 12
- $a A predictive model for progression to clinical arthritis in at-risk individuals with arthralgia based on lymphocyte subsets and ACPA / $c K. Prajzlerová, O. Kryštůfková, N. Kaspříková, N. Růžičková, H. Hulejová, P. Hánová, J. Vencovský, L. Šenolt, M. Filková
- 520 9_
- $a BACKGROUND: The presence of ACPA significantly increases the risk of developing RA. Dysregulation of lymphocyte subpopulations was previously described in RA. Our objective was to propose the predictive model for progression to clinical arthritis based on peripheral lymphocyte subsets and ACPA in individuals who are at risk of RA. METHODS: Our study included 207 at-risk individuals defined by the presence of arthralgias and either additional ACPA positivity or meeting the EULAR definition for clinically suspect arthralgia. For the construction of predictive models, 153 individuals with symptom duration ≥12 months who have not yet progressed to arthritis were included. The lymphocyte subsets were evaluated using flow cytometry and anti-CCP using ELISA. RESULTS: Out of all individuals with arthralgia, 41 progressed to arthritis. A logistic regression model with baseline peripheral blood lymphocyte subpopulations and ACPA as predictors was constructed. The resulting predictive model showed that high anti-CCP IgG, higher percentage of CD4+ T cells, and lower percentage of T and NK cells increased the probability of arthritis development. Moreover, the proposed classification decision tree showed that individuals having both high anti-CCP IgG and low NK cells have the highest risk of developing arthritis. CONCLUSIONS: We propose a predictive model based on baseline levels of lymphocyte subpopulations and ACPA to identify individuals with arthralgia with the highest risk of progression to clinical arthritis. The final model includes T cells and NK cells, which are involved in the pathogenesis of RA. This preliminary model requires further validation in larger at-risk cohorts.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a artralgie $x imunologie $7 D018771
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 12
- $a progrese nemoci $7 D018450
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 12
- $a revmatoidní artritida $x imunologie $x krev $7 D001172
- 650 12
- $a protilátky proti citrulinovaným peptidům $x krev $x imunologie $7 D000075422
- 650 _2
- $a dospělí $7 D000328
- 650 12
- $a podskupiny lymfocytů $x imunologie $7 D016131
- 650 _2
- $a prediktivní hodnota testů $7 D011237
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kryštůfková, Olga $u Institute of Rheumatology, Prague, Czech Republic $u Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- 700 1_
- $a Kaspříková, Nikola $u Faculty of Informatics and Statistics, Prague University of Economics and Business, Prague, Czech Republic
- 700 1_
- $a Růžičková, Nora $u Institute of Rheumatology, Prague, Czech Republic $u Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- 700 1_
- $a Hulejová, Hana $u Institute of Rheumatology, Prague, Czech Republic
- 700 1_
- $a Hánová, Petra $u Institute of Rheumatology, Prague, Czech Republic
- 700 1_
- $a Vencovský, Jiří $u Institute of Rheumatology, Prague, Czech Republic $u Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- 700 1_
- $a Šenolt, Ladislav $u Institute of Rheumatology, Prague, Czech Republic $u Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- 700 1_
- $a Filková, Mária $u Institute of Rheumatology, Prague, Czech Republic $u Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic $1 https://orcid.org/0000000284889227 $7 xx0074560
- 773 0_
- $w MED00011379 $t Rheumatology $x 1462-0332 $g Roč. 63, č. 11 (2024), s. 3155-3163
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39120892 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206104625 $b ABA008
- 999 __
- $a ok $b bmc $g 2263459 $s 1239712
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 63 $c 11 $d 3155-3163 $e 20241101 $i 1462-0332 $m Rheumatology $n Rheumatology (Oxford) $x MED00011379
- GRA __
- $a NU22-05-00226 $p At-Risk of Rheumatoid Arthritis
- LZP __
- $a Pubmed-20250121