• Je něco špatně v tomto záznamu ?

A predictive model for progression to clinical arthritis in at-risk individuals with arthralgia based on lymphocyte subsets and ACPA

K. Prajzlerová, O. Kryštůfková, N. Kaspříková, N. Růžičková, H. Hulejová, P. Hánová, J. Vencovský, L. Šenolt, M. Filková

. 2024 ; 63 (11) : 3155-3163. [pub] 20241101

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25003705

Grantová podpora
NU22-05-00226 At-Risk of Rheumatoid Arthritis

BACKGROUND: The presence of ACPA significantly increases the risk of developing RA. Dysregulation of lymphocyte subpopulations was previously described in RA. Our objective was to propose the predictive model for progression to clinical arthritis based on peripheral lymphocyte subsets and ACPA in individuals who are at risk of RA. METHODS: Our study included 207 at-risk individuals defined by the presence of arthralgias and either additional ACPA positivity or meeting the EULAR definition for clinically suspect arthralgia. For the construction of predictive models, 153 individuals with symptom duration ≥12 months who have not yet progressed to arthritis were included. The lymphocyte subsets were evaluated using flow cytometry and anti-CCP using ELISA. RESULTS: Out of all individuals with arthralgia, 41 progressed to arthritis. A logistic regression model with baseline peripheral blood lymphocyte subpopulations and ACPA as predictors was constructed. The resulting predictive model showed that high anti-CCP IgG, higher percentage of CD4+ T cells, and lower percentage of T and NK cells increased the probability of arthritis development. Moreover, the proposed classification decision tree showed that individuals having both high anti-CCP IgG and low NK cells have the highest risk of developing arthritis. CONCLUSIONS: We propose a predictive model based on baseline levels of lymphocyte subpopulations and ACPA to identify individuals with arthralgia with the highest risk of progression to clinical arthritis. The final model includes T cells and NK cells, which are involved in the pathogenesis of RA. This preliminary model requires further validation in larger at-risk cohorts.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003705
003      
CZ-PrNML
005      
20250206104629.0
007      
ta
008      
250121s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/rheumatology/keae383 $2 doi
035    __
$a (PubMed)39120892
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Prajzlerová, Klára $u Institute of Rheumatology, Prague, Czech Republic
245    12
$a A predictive model for progression to clinical arthritis in at-risk individuals with arthralgia based on lymphocyte subsets and ACPA / $c K. Prajzlerová, O. Kryštůfková, N. Kaspříková, N. Růžičková, H. Hulejová, P. Hánová, J. Vencovský, L. Šenolt, M. Filková
520    9_
$a BACKGROUND: The presence of ACPA significantly increases the risk of developing RA. Dysregulation of lymphocyte subpopulations was previously described in RA. Our objective was to propose the predictive model for progression to clinical arthritis based on peripheral lymphocyte subsets and ACPA in individuals who are at risk of RA. METHODS: Our study included 207 at-risk individuals defined by the presence of arthralgias and either additional ACPA positivity or meeting the EULAR definition for clinically suspect arthralgia. For the construction of predictive models, 153 individuals with symptom duration ≥12 months who have not yet progressed to arthritis were included. The lymphocyte subsets were evaluated using flow cytometry and anti-CCP using ELISA. RESULTS: Out of all individuals with arthralgia, 41 progressed to arthritis. A logistic regression model with baseline peripheral blood lymphocyte subpopulations and ACPA as predictors was constructed. The resulting predictive model showed that high anti-CCP IgG, higher percentage of CD4+ T cells, and lower percentage of T and NK cells increased the probability of arthritis development. Moreover, the proposed classification decision tree showed that individuals having both high anti-CCP IgG and low NK cells have the highest risk of developing arthritis. CONCLUSIONS: We propose a predictive model based on baseline levels of lymphocyte subpopulations and ACPA to identify individuals with arthralgia with the highest risk of progression to clinical arthritis. The final model includes T cells and NK cells, which are involved in the pathogenesis of RA. This preliminary model requires further validation in larger at-risk cohorts.
650    _2
$a lidé $7 D006801
650    12
$a artralgie $x imunologie $7 D018771
650    _2
$a ženské pohlaví $7 D005260
650    12
$a progrese nemoci $7 D018450
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    12
$a revmatoidní artritida $x imunologie $x krev $7 D001172
650    12
$a protilátky proti citrulinovaným peptidům $x krev $x imunologie $7 D000075422
650    _2
$a dospělí $7 D000328
650    12
$a podskupiny lymfocytů $x imunologie $7 D016131
650    _2
$a prediktivní hodnota testů $7 D011237
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kryštůfková, Olga $u Institute of Rheumatology, Prague, Czech Republic $u Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Kaspříková, Nikola $u Faculty of Informatics and Statistics, Prague University of Economics and Business, Prague, Czech Republic
700    1_
$a Růžičková, Nora $u Institute of Rheumatology, Prague, Czech Republic $u Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Hulejová, Hana $u Institute of Rheumatology, Prague, Czech Republic
700    1_
$a Hánová, Petra $u Institute of Rheumatology, Prague, Czech Republic
700    1_
$a Vencovský, Jiří $u Institute of Rheumatology, Prague, Czech Republic $u Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Šenolt, Ladislav $u Institute of Rheumatology, Prague, Czech Republic $u Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Filková, Mária $u Institute of Rheumatology, Prague, Czech Republic $u Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic $1 https://orcid.org/0000000284889227 $7 xx0074560
773    0_
$w MED00011379 $t Rheumatology $x 1462-0332 $g Roč. 63, č. 11 (2024), s. 3155-3163
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39120892 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104625 $b ABA008
999    __
$a ok $b bmc $g 2263459 $s 1239712
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 63 $c 11 $d 3155-3163 $e 20241101 $i 1462-0332 $m Rheumatology $n Rheumatology (Oxford) $x MED00011379
GRA    __
$a NU22-05-00226 $p At-Risk of Rheumatoid Arthritis
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...