Exercise-induced circulating microRNA changes in athletes in various training scenarios
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29338015
PubMed Central
PMC5770042
DOI
10.1371/journal.pone.0191060
PII: PONE-D-17-30834
Knihovny.cz E-zdroje
- MeSH
- cvičení * MeSH
- dospělí MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- mladý dospělý MeSH
- sporty * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
BACKGROUND: The aim of the study was to compare selected extracellular miRNA levels (miR-16, miR-21, miR-93 and miR-222 with the response to 8-week-long explosive strength training (EXPL), hypertrophic strength training (HYP) and high-intensity interval training (HIIT). METHODS: 30 young male athletes of white European origin (mean age: 22.5 ± 4.06 years) recruited at the Faculty of Sports Studies of Masaryk University were enrolled in this study. The study participants were randomly assigned to three possible training scenarios: EXPL, HYP or HITT and participated in 8-week-long program in given arm. Blood plasma samples were collected at the baseline and at week 5 and 8 and anthropometric and physical activity parameters were measured. Pre- and post-intervention characteristics were compared and participants were further evaluated as responders (RES) or non-responders (NRES). RES/NRES status was established for the following characteristics: 300°/s right leg extension (t300), 60°/s right leg extension (t60), isometric extension (IE), vertical jump, isometric extension of the right leg and body fat percentage (BFP). RESULTS: No differences in miRNA levels were apparent between the intervention groups at baseline. No statistically significant prediction role was observed using crude univariate stepwise regression model analysis where RES/NRES status for t300, t60, IE, vertical jump and pFM was used as a dependent variable and miR-21, miR-222, miR-16 and miR-93 levels at baseline were used as independent variables. The baseline levels of miR-93 expressed an independent prediction role for responder status based on isometric extension of the right leg (beta estimate 0.76, 95% CI: -0.01; 1.53, p = 0.052). DISCUSSION: The results of the study indicate that 8-week-long explosive strength training, hypertrophic strength training and high-intensity interval training regimens are associated with significant changes in miR-16, mir-21, miR-222 and miR-93 levels compared to a baseline in athletic young men.
Zobrazit více v PubMed
Febbraio MA. Exercise metabolism in 2016: Health benefits of exercise—more than meets the eye! Nat Rev Endocrinol. 2017;13: 72–74. doi: 10.1038/nrendo.2016.218 PubMed DOI
Lombardi G, Perego S, Sansoni V, Banfi G. Circulating miRNA as fine regulators of the physiological responses to physical activity: Pre-analytical warnings for a novel class of biomarkers. Clin Biochem. 2016; doi: 10.1016/j.clinbiochem.2016.09.017 PubMed DOI
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. cell. 2004;116: 281–297. PubMed
Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A. 2007;104: 17016–17021. doi: 10.1073/pnas.0708115104 PubMed DOI PMC
Missiaglia E, Shepherd CJ, Aladowicz E, Olmos D, Selfe J, Pierron G, et al. MicroRNA and gene co-expression networks characterize biological and clinical behavior of rhabdomyosarcomas. Cancer Lett. 2016; doi: 10.1016/j.canlet.2016.10.011 PubMed DOI PMC
Polakovicova M, Musil P, Laczo E, Hamar D, Kyselovic J. Circulating MicroRNAs as Potential Biomarkers of Exercise Response. Int J Mol Sci. 2016;17 doi: 10.3390/ijms17101553 PubMed DOI PMC
Roncarati R, Viviani Anselmi C, Losi MA, Papa L, Cavarretta E, Da Costa Martins P, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2014;63: 920–927. doi: 10.1016/j.jacc.2013.09.041 PubMed DOI
Viereck J, Thum T. Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury. Circ Res. 2017;120: 381–399. doi: 10.1161/CIRCRESAHA.116.308434 PubMed DOI
Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8: 467–477. doi: 10.1038/nrclinonc.2011.76 PubMed DOI PMC
Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M, et al. The MicroRNA Spectrum in 12 Body Fluids. Clin Chem. 2010;56: 1733–1741. doi: 10.1373/clinchem.2010.147405 PubMed DOI PMC
Altana V, Geretto M, Pulliero A. MicroRNAs and Physical Activity. MicroRNA Shariqah United Arab Emir. 2015;4: 74–85. PubMed
Russell AP, Lamon S. Exercise, Skeletal Muscle and Circulating microRNAs. Prog Mol Biol Transl Sci. 2015;135: 471–496. doi: 10.1016/bs.pmbts.2015.07.018 PubMed DOI
Kilian Y, Wehmeier UF, Wahl P, Mester J, Hilberg T, Sperlich B. Acute Response of Circulating Vascular Regulating MicroRNAs during and after High-Intensity and High-Volume Cycling in Children. Front Physiol. 2016;7: 92 doi: 10.3389/fphys.2016.00092 PubMed DOI PMC
Wardle SL, Bailey MES, Kilikevicius A, Malkova D, Wilson RH, Venckunas T, et al. Plasma microRNA levels differ between endurance and strength athletes. PloS One. 2015;10: e0122107 doi: 10.1371/journal.pone.0122107 PubMed DOI PMC
Wang K, Yuan Y, Cho J-H, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PloS One. 2012;7: e41561 doi: 10.1371/journal.pone.0041561 PubMed DOI PMC
Chou C-H, Chang N-W, Shrestha S, Hsu S-D, Lin Y-L, Lee W-H, et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016;44: D239–D247. doi: 10.1093/nar/gkv1258 PubMed DOI PMC
Altana V, Geretto M, Pulliero A. MicroRNAs and Physical Activity. MicroRNA Shariqah United Arab Emir. 2015;4: 74–85. PubMed
Russell AP, Lamon S. Exercise, Skeletal Muscle and Circulating microRNAs. Prog Mol Biol Transl Sci. 2015;135: 471–496. doi: 10.1016/bs.pmbts.2015.07.018 PubMed DOI
Sapp RM, Shill DD, Roth SM, Hagberg JM. Circulating microRNAs in acute and chronic exercise: more than mere biomarkers. J Appl Physiol Bethesda Md 1985. 2017;122: 702–717. doi: 10.1152/japplphysiol.00982.2016 PubMed DOI
Fernandes T, Magalhães FC, Roque FR, Phillips MI, Oliveira EM. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16, -21, and -126. Hypertens Dallas Tex 1979. 2012;59: 513–520. doi: 10.1161/HYPERTENSIONAHA.111.185801 PubMed DOI
Chamorro-Jorganes A, Araldi E, Penalva LOF, Sandhu D, Fernández-Hernando C, Suárez Y. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol. 2011;31: 2595–2606. doi: 10.1161/ATVBAHA.111.236521 PubMed DOI PMC
Wahl P, Wehmeier UF, Jansen FJ, Kilian Y, Bloch W, Werner N, et al. Acute Effects of Different Exercise Protocols on the Circulating Vascular microRNAs -16, -21, and -126 in Trained Subjects. Front Physiol. 2016;7: 643 doi: 10.3389/fphys.2016.00643 PubMed DOI PMC
Sheedy FJ. Turning 21: Induction of miR-21 as a Key Switch in the Inflammatory Response. Front Immunol. 2015;6: 19 doi: 10.3389/fimmu.2015.00019 PubMed DOI PMC
Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol. 2011;589: 3983–3994. doi: 10.1113/jphysiol.2011.213363 PubMed DOI PMC
Cui S, Sun B, Yin X, Guo X, Chao D, Zhang C, et al. Time-course responses of circulating microRNAs to three resistance training protocols in healthy young men. Sci Rep. 2017;7: 2203 doi: 10.1038/s41598-017-02294-y PubMed DOI PMC
Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015;21: 584–595. doi: 10.1016/j.cmet.2015.02.014 PubMed DOI PMC
Ihle MA, Trautmann M, Kuenstlinger H, Huss S, Heydt C, Fassunke J, et al. miRNA-221 and miRNA-222 induce apoptosis via the KIT/AKT signalling pathway in gastrointestinal stromal tumours. Mol Oncol. 2015;9: 1421–1433. doi: 10.1016/j.molonc.2015.03.013 PubMed DOI PMC
Bye A, Røsjø H, Aspenes ST, Condorelli G, Omland T, Wisløff U. Circulating microRNAs and aerobic fitness—the HUNT-Study. PloS One. 2013;8: e57496 doi: 10.1371/journal.pone.0057496 PubMed DOI PMC
Long J, Wang Y, Wang W, Chang BHJ, Danesh FR. Identification of MicroRNA-93 as a Novel Regulator of Vascular Endothelial Growth Factor in Hyperglycemic Conditions. J Biol Chem. 2010;285: 23457–23465. doi: 10.1074/jbc.M110.136168 PubMed DOI PMC
Badal SS, Wang Y, Long J, Corcoran DL, Chang BH, Truong LD, et al. miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy. Nat Commun. 2016;7 doi: 10.1038/ncomms12076 PubMed DOI PMC