• Je něco špatně v tomto záznamu ?

A Large Transposon Insertion in the stiff1 Promoter Increases Stalk Strength in Maize

Z. Zhang, X. Zhang, Z. Lin, J. Wang, H. Liu, L. Zhou, S. Zhong, Y. Li, C. Zhu, J. Lai, X. Li, J. Yu, Z. Lin,

. 2020 ; 32 (1) : 152-165. [pub] 20191104

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028682

Stalk lodging, which is generally determined by stalk strength, results in considerable yield loss and has become a primary threat to maize (Zea mays) yield under high-density planting. However, the molecular genetic basis of maize stalk strength remains unclear, and improvement methods remain inefficient. Here, we combined map-based cloning and association mapping and identified the gene stiff1 underlying a major quantitative trait locus for stalk strength in maize. A 27.2-kb transposable element insertion was present in the promoter of the stiff1 gene, which encodes an F-box domain protein. This transposable element insertion repressed the transcription of stiff1, leading to the increased cellulose and lignin contents in the cell wall and consequently greater stalk strength. Furthermore, a precisely edited allele of stiff1 generated through the CRISPR/Cas9 system resulted in plants with a stronger stalk than the unedited control. Nucleotide diversity analysis revealed that the promoter of stiff1 was under strong selection in the maize stiff-stalk group. Our cloning of stiff1 reveals a case in which a transposable element played an important role in maize improvement. The identification of stiff1 and our edited stiff1 allele pave the way for efficient improvement of maize stalk strength.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028682
003      
CZ-PrNML
005      
20210114154713.0
007      
ta
008      
210105s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1105/tpc.19.00486 $2 doi
035    __
$a (PubMed)31690654
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zhang, Zhihai $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
245    12
$a A Large Transposon Insertion in the stiff1 Promoter Increases Stalk Strength in Maize / $c Z. Zhang, X. Zhang, Z. Lin, J. Wang, H. Liu, L. Zhou, S. Zhong, Y. Li, C. Zhu, J. Lai, X. Li, J. Yu, Z. Lin,
520    9_
$a Stalk lodging, which is generally determined by stalk strength, results in considerable yield loss and has become a primary threat to maize (Zea mays) yield under high-density planting. However, the molecular genetic basis of maize stalk strength remains unclear, and improvement methods remain inefficient. Here, we combined map-based cloning and association mapping and identified the gene stiff1 underlying a major quantitative trait locus for stalk strength in maize. A 27.2-kb transposable element insertion was present in the promoter of the stiff1 gene, which encodes an F-box domain protein. This transposable element insertion repressed the transcription of stiff1, leading to the increased cellulose and lignin contents in the cell wall and consequently greater stalk strength. Furthermore, a precisely edited allele of stiff1 generated through the CRISPR/Cas9 system resulted in plants with a stronger stalk than the unedited control. Nucleotide diversity analysis revealed that the promoter of stiff1 was under strong selection in the maize stiff-stalk group. Our cloning of stiff1 reveals a case in which a transposable element played an important role in maize improvement. The identification of stiff1 and our edited stiff1 allele pave the way for efficient improvement of maize stalk strength.
650    _2
$a alely $7 D000483
650    _2
$a CRISPR-Cas systémy $7 D064113
650    _2
$a buněčná stěna $x metabolismus $7 D002473
650    _2
$a mapování chromozomů $7 D002874
650    _2
$a transpozibilní elementy DNA $x genetika $7 D004251
650    _2
$a rostlinné geny $7 D017343
650    _2
$a lignin $x metabolismus $7 D008031
650    _2
$a fenotyp $7 D010641
650    _2
$a rostlinné proteiny $x genetika $x metabolismus $7 D010940
650    12
$a promotorové oblasti (genetika) $7 D011401
650    _2
$a lokus kvantitativního znaku $7 D040641
650    _2
$a sekvenční analýza $7 D017421
650    _2
$a transformace genetická $7 D014170
650    _2
$a kukuřice setá $x genetika $7 D003313
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Zhang, Xuan $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
700    1_
$a Lin, Zhelong $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
700    1_
$a Wang, Jian $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
700    1_
$a Liu, Hangqin $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
700    1_
$a Zhou, Leina $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
700    1_
$a Zhong, Shuyang $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
700    1_
$a Li, Yan $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
700    1_
$a Zhu, Can $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
700    1_
$a Lai, Jinsheng $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
700    1_
$a Li, Xianran $u Department of Agronomy, Iowa State University, Ames, Iowa 50011.
700    1_
$a Yu, Jianming $u Department of Agronomy, Iowa State University, Ames, Iowa 50011.
700    1_
$a Lin, Zhongwei $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China zlin@cau.edu.cn.
773    0_
$w MED00005315 $t The Plant cell $x 1532-298X $g Roč. 32, č. 1 (2020), s. 152-165
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31690654 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114154710 $b ABA008
999    __
$a ok $b bmc $g 1609017 $s 1119862
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 32 $c 1 $d 152-165 $e 20191104 $i 1532-298X $m The Plant cell $n Plant Cell $x MED00005315
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...