A Large Transposon Insertion in the stiff1 Promoter Increases Stalk Strength in Maize
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31690654
PubMed Central
PMC6961635
DOI
10.1105/tpc.19.00486
PII: tpc.19.00486
Knihovny.cz E-resources
- MeSH
- Alleles MeSH
- Cell Wall metabolism MeSH
- CRISPR-Cas Systems MeSH
- Phenotype MeSH
- Zea mays genetics MeSH
- Lignin metabolism MeSH
- Quantitative Trait Loci MeSH
- Chromosome Mapping MeSH
- Promoter Regions, Genetic * MeSH
- Genes, Plant MeSH
- Plant Proteins genetics metabolism MeSH
- Sequence Analysis MeSH
- Transformation, Genetic MeSH
- DNA Transposable Elements genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Lignin MeSH
- Plant Proteins MeSH
- DNA Transposable Elements MeSH
Stalk lodging, which is generally determined by stalk strength, results in considerable yield loss and has become a primary threat to maize (Zea mays) yield under high-density planting. However, the molecular genetic basis of maize stalk strength remains unclear, and improvement methods remain inefficient. Here, we combined map-based cloning and association mapping and identified the gene stiff1 underlying a major quantitative trait locus for stalk strength in maize. A 27.2-kb transposable element insertion was present in the promoter of the stiff1 gene, which encodes an F-box domain protein. This transposable element insertion repressed the transcription of stiff1, leading to the increased cellulose and lignin contents in the cell wall and consequently greater stalk strength. Furthermore, a precisely edited allele of stiff1 generated through the CRISPR/Cas9 system resulted in plants with a stronger stalk than the unedited control. Nucleotide diversity analysis revealed that the promoter of stiff1 was under strong selection in the maize stiff-stalk group. Our cloning of stiff1 reveals a case in which a transposable element played an important role in maize improvement. The identification of stiff1 and our edited stiff1 allele pave the way for efficient improvement of maize stalk strength.
See more in PubMed
Bolger A.M., Lohse M., Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. PubMed PMC
Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633–2635. PubMed
Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823. PubMed PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29: 15–21. PubMed PMC
Duvick D.N. (1984). Genetic contributions to yield gains of five major crop plants In Genetic Contributions to Yield Gains of Five Major Crop Plants, Fehr W.R., ed (Madison, WI: Crop Science Society of America and American Society of Agronomy; ), pp. 15–47.
Duvick D.N. (2005). Genetic progress in yield of United States maize (Zea mays L.). Maydica 50: 193–202.
Flint-Garcia S.A., Darrah L.L., McMullen M.D., Hibbard B.E. (2003a). Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theor. Appl. Genet. 107: 1331–1336. PubMed
Flint-Garcia S.A., Jampatong C., Darrah L.L., McMullen M.D. (2003b). Quantitative trait locus analysis of stalk strength in four maize populations. Crop Sci. 43: 13–22.
Flint-Garcia S.A., Thuillet A.C., Yu J., Pressoir G., Romero S.M., Mitchell S.E., Doebley J., Kresovich S., Goodman M.M., Buckler E.S. (2005). Maize association population: A high-resolution platform for quantitative trait locus dissection. Plant J 44: 1054–1064. PubMed
Forestan C., Farinati S., Varotto S. (2012). The maize PIN gene family of auxin transporters. Front. Plant Sci. 3: 16. PubMed PMC
Huang D., Wang S., Zhang B., Shang-Guan K., Shi Y., Zhang D., Liu X., Wu K., Xu Z., Fu X., Zhou Y. (2015). A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell 27: 1681–1696. PubMed PMC
Hussey S.G., Mizrachi E., Spokevicius A.V., Bossinger G., Berger D.K., Myburg A.A. (2011). SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol. 11: 173. PubMed PMC
Ishida Y., Hiei Y., Komari T. (2007). Agrobacterium-mediated transformation of maize. Nat. Protoc. 2: 1614–1621. PubMed
Ko J.H., Jeon H.W., Kim W.C., Kim J.Y., Han K.H. (2014). The MYB46/MYB83-mediated transcriptional regulatory programme is a gatekeeper of secondary wall biosynthesis. Ann. Bot. 114: 1099–1107. PubMed PMC
Ko J.H., Kim W.C., Han K.H. (2009). Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J. 60: 649–665. PubMed
Kumar S., Stecher G., Tamura K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870–1874. PubMed PMC
Lamkey K.R. (1992). Fifty years of recurrent selection in the Iowa stiff stalk synthetic maize population. Maydica 37: 9.
Li K., Yan J., Li J., Yang X. (2014). Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. BMC Plant Biol. 14: 152. PubMed PMC
Lin Z., et al. (2012). Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 44: 720–724. PubMed PMC
Liu H., Liu H., Zhou L., Zhang Z., Zhang X., Wang M., Li H., Lin Z. (2015). Parallel domestication of the heading date 1 gene in cereals. Mol. Biol. Evol. 32: 2726–2737. PubMed
Liu K., Goodman M., Muse S., Smith J.S., Buckler E., Doebley J. (2003). Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165: 2117–2128. PubMed PMC
Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408. PubMed
Pedersen J.F., Toy J.J. (1999). Measurement of sorghum stalk strength using the Missouri-modified electronic rind penetrometer. Maydica 44: 155–158.
Peiffer J.A., Flint-Garcia S.A., De Leon N., McMullen M.D., Kaeppler S.M., Buckler E.S. (2013). The genetic architecture of maize stalk strength. PLoS One 8: e67066. PubMed PMC
Peng J., et al. (1999). ‘Green Revolution’ genes encode mutant gibberellin response modulators. Nature 400: 256–261. PubMed
Robertson D.J., Julias M., Lee S.Y., Cook D.D. (2017). Maize stalk lodging: Morphological determinants of stalk strength. Crop Sci. 57: 926–934.
Robertson D.J., Lee S.Y., Julias M., Cook D.D. (2016). Maize stalk lodging: Flexural stiffness predicts strength. Crop Sci. 56: 8.
Rozas J., Sánchez-DelBarrio J.C., Messeguer X., Rozas R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497. PubMed
Sasaki A., Ashikari M., Ueguchi-Tanaka M., Itoh H., Nishimura A., Swapan D., Ishiyama K., Saito T., Kobayashi M., Khush G.S., Kitano H., Matsuoka M. (2002). Green Revolution: A mutant gibberellin-synthesis gene in rice. Nature 416: 701–702. PubMed
Schnable P.S., et al. (2009). The B73 maize genome: Complexity, diversity, and dynamics. Science 326: 1112–1115. PubMed
Shiferaw B., Prasanna B.M., Hellin J., Banziger M. (2011). Crops that feed the world. 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 3: 307–327.
Silva L.D.C.E., Wang S., Zeng Z.B. (2012). Composite interval mapping and multiple interval mapping: Procedures and guidelines for using Windows QTL Cartographer. Methods Mol. Biol. 871: 75–119. PubMed
Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D. (2011). Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure.. (Golden, CO: National Renewable Energy Laboratory; ).
Studer A., Zhao Q., Ross-Ibarra J., Doebley J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43: 1160–1163. PubMed PMC
Tajima F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595. PubMed PMC
Tracy W.F., Chandler M.A. (2006). The historical and biological basis of the concept of heterotic patterns in corn belt dent maize In Plant Breeding: The Arnel R. Hallauer International Symposium., Lamkey K.R., Lee M., eds (Ames, IA: Blackwell Publishing; ), pp. 219–233.
Trapnell C., Williams B.A., Pertea G., Mortazavi A., Kwan G., van Baren M.J., Salzberg S.L., Wold B.J., Pachter L. (2010). Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28: 511–515. PubMed PMC
Tuinstra M.R., Ejeta G., Goldsbrough P.B. (1997). Heterogeneous inbred family (HIF) analysis: A method for developing near-isogenic lines that differ at quantitative trait loci. Theor. Appl. Genet. 95: 1005–1011.
Wills D.M., Whipple C.J., Takuno S., Kursel L.E., Shannon L.M., Ross-Ibarra J., Doebley J.F. (2013). From many, one: Genetic control of prolificacy during maize domestication. PLoS Genet. 9: e1003604. PubMed PMC
Yang Q., Yin G., Guo Y., Zhang D., Chen S., Xu M. (2010). A major QTL for resistance to Gibberella stalk rot in maize. Theor. Appl. Genet. 121: 673–687. PubMed
Yu J., Holland J.B., McMullen M.D., Buckler E.S. (2008). Genetic design and statistical power of nested association mapping in maize. Genetics 178: 539–551. PubMed PMC
Zhang M., Zhan F., Sun H.H., Gong X.J., Fei Z.J., Gao S. (2014). Fastq_clean: An optimized pipeline to clean the Illumina sequencing data with quality control In IEEE International Conference on Bioinformatics and Biomedicine. (IEEE; ), pp. 44–48.
Zhong R., Lee C., McCarthy R.L., Reeves C.K., Jones E.G., Ye Z.H. (2011). Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors. Plant Cell Physiol. 52: 1856–1871. PubMed