Reactivity of fluorographene is triggered by point defects: beyond the perfect 2D world
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
29442111
PubMed Central
PMC5892133
DOI
10.1039/c7nr09426d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Preparation of graphene derivatives using fluorographene (FG) as a precursor has become a key strategy for the large-scale synthesis of new 2-D materials (e.g. graphene acid, cyanographene, allyl-graphene) with tailored physicochemical properties. However, to gain full control over the derivatization process, it is essential to understand the reaction mechanisms and accompanying processes that affect the composition and structure of the final products. Despite the strength of C-F bonds and high chemical stability of perfluorinated hydrocarbons, FG is surprisingly susceptible to reactions under ambient conditions. There is clear evidence that nucleophilic substitution on FG is accompanied by spontaneous defluorination, and solvent-induced defluorination can occur even in the absence of any nucleophilic agent. Here, we show that distributed radical centers (fluorine vacancies) on the FG surface need to be taken into account in order to rationalize the defluorination mechanism. Depending on the environment, these radical centers can react as electron acceptors, electrophilic sites and/or cause homolytic bond cleavages. We also propose a new radical mechanism of FG defluorination in the presence of N,N'-dimethylformamide (DMF) solvent. Spin-trap experiments as well as 19F NMR measurements unambiguously confirmed formation of N,N'-dimethylformyl radicals and also showed that N,N'-dimethylcarbamoyl fluoride plays a key role in the proposed mechanism. These findings imply that point defects in 2D materials should be considered as key factor determining their chemical properties and reactivity.
Zobrazit více v PubMed
Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Science. 2004;306:666–669. PubMed
Duplock E. J., Scheffler M., Lindan P. J. D. Phys. Rev. Lett. 2004;92:225502. PubMed
Cheng S. H., Zou K., Okino F., Gutierrez H. R., Gupta A., Shen N., Eklund P. C., Sofo J. O., Zhu J. Phys. Rev. B: Condens. Matter Mater. Phys. 2010;81:205435.
Elias D. C., Nair R. R., Mohiuddin T. M. G., Morozov S. V., Blake P., Halsall M. P., Ferrari A. C., Boukhvalov D. W., Katsnelson M. I., Geim A. K., Novoselov K. S. Science. 2009;323:610–613. PubMed
Bulusheva L. G., Tur V. A., Fedorovskaya E. O., Asanov I. P., Pontiroli D., Riccò M., Okotrub A. V. Carbon. 2014;78:137–146.
Vizintin A., Lozinsek M., Chellappan R. K., Foix D., Krainc A., Mali G., Drazic G., Genorio B., Dedryvere R., Dominko R. Chem. Mater. 2015;27:7070–7081.
Xie J. J., Li C. L., Cui Z. H., Guo X. X. Adv. Funct. Mater. 2015;25:6519–6526.
Urbanova V., Karlicky F., Matej A., Sembera F., Janousek Z., Perman J. A., Ranc V., Cepe K., Michl J., Otyepka M., Zboril R. Nanoscale. 2016;8:12134–12142. PubMed
Liang S.-Z., Chen G., Harutyunyan A. R., Cole M. W., Sofo J. O. Appl. Phys. Lett. 2013;103:233108.
Das S., Sudhagar P., Verma V., Song D., Ito E., Lee S. Y., Kang Y. S., Choi W. Adv. Funct. Mater. 2011;21:3729–3736.
Liao L., Peng H. L., Liu Z. F. J. Am. Chem. Soc. 2014;136:12194–12200. PubMed
Park J., Yan M. D. Acc. Chem. Res. 2013;46:181–189. PubMed
Economopoulos S. P., Rotas G., Miyata Y., Shinohara H., Tagmatarchis N. ACS Nano. 2010;4:7499–7507. PubMed
Englert J. M., Dotzer C., Yang G. A., Schmid M., Papp C., Gottfried J. M., Steinruck H. P., Spiecker E., Hauke F., Hirsch A. Nat. Chem. 2011;3:279–286. PubMed
Bian S. D., Scott A. M., Cao Y., Liang Y., Osuna S., Houk K. N., Braunschweig A. B. J. Am. Chem. Soc. 2013;135:9240–9243. PubMed
Dubey G., Urcuyo R., Abb S., Rinke G., Burghard M., Rauschenbach S., Kern K. J. Am. Chem. Soc. 2014;136:13482–13485. PubMed
Eng A. Y. S., Chua C. K., Pumera M. Nanoscale. 2015;7:20256–20266. PubMed
Gilje S., Han S., Wang M., Wang K. L., Kaner R. B. Nano Lett. 2007;7:3394–3398. PubMed
Nair R. R., Ren W. C., Jalil R., Riaz I., Kravets V. G., Britnell L., Blake P., Schedin F., Mayorov A. S., Yuan S. J., Katsnelson M. I., Cheng H. M., Strupinski W., Bulusheva L. G., Okotrub A. V., Grigorieva I. V., Grigorenko A. N., Novoselov K. S., Geim A. K. Small. 2010;6:2877–2884. PubMed
Robinson J. T., Burgess J. S., Junkermeier C. E., Badescu S. C., Reinecke T. L., Perkins F. K., Zalalutdniov M. K., Baldwin J. W., Culbertson J. C., Sheehan P. E., Snow E. S. Nano Lett. 2010;10:3001–3005. PubMed
Zboril R., Karlicky F., Bourlinos A. B., Steriotis T. A., Stubos A. K., Georgakilas V., Safarova K., Jancik D., Trapalis C., Otyepka M. Small. 2010;6:2885–2891. PubMed PMC
Worsley K. A., Ramesh P., Mandal S. K., Niyogi S., Itkis M. E., Haddon R. C. Chem. Phys. Lett. 2007;445:51–56.
Dubecky M., Otyepkova E., Lazar P., Karlicky F., Petr M., Cepe K., Banas P., Zboril R., Otyepka M. J. Phys. Chem. Lett. 2015;6:1430–1434. PubMed
Lazar P., Chua C. K., Hola K., Zboril R., Otyepka M., Pumera M. Small. 2015;11:3790–3796. PubMed
Urbanova V., Hola K., Bourlinos A. B., Cepe K., Ambrosi A., Loo A. H., Pumera M., Karlicky F., Otyepka M., Zboril R. Adv. Mater. 2015;27:2305–2310. PubMed
Whitener K. E., Stine R., Robinson J. T., Sheehan P. E. J. Phys. Chem. C. 2015;119:10507–10512.
Stine R., Ciszek J. W., Barlow D. E., Lee W. K., Robinson J. T., Sheehan P. E. Langmuir. 2012;28:7957–7961. PubMed
Bosch-Navarro C., Walker M., Wilson N. R., Rourke J. P. J. Mater. Chem. C. 2015;3:7627–7631.
Li B. Y., He T. J., Wang Z. M., Cheng Z., Liu Y., Chen T., Lai W. C., Wang X., Liu X. Y. Phys. Chem. Chem. Phys. 2016;18:17495–17505. PubMed
Ye X. Y., Ma L. M., Yang Z. G., Wang J. Q., Wang H. G., Yang S. R. ACS Appl. Mater. Interfaces. 2016;8:7483–7488. PubMed
Bakandritsos A., Pykal M., Blonski P., Jakubec P., Chronopoulos D. D., Polakova K., Georgakilas V., Cepe K., Tomanec O., Ranc V., Bourlinos A. B., Zboril R., Otyepka M. ACS Nano. 2017;11:2982–2991. PubMed PMC
Kovaricek P., Bastl Z., Vales V., Kalbac M. Chem. – Eur. J. 2016;22:5404–5408. PubMed
Chronopoulos D. D., Bakandritsos A., Lazar P., Pykal M., Cepe K., Zboril R., Otyepka M. Chem. Mater. 2017;29:926–930. PubMed PMC
Wang X., Wang W. M., Liu Y., Ren M. M., Xiao H. N., Liu X. Y. Phys. Chem. Chem. Phys. 2016;18:3285–3293. PubMed
Tuček J., Holá K., Bourlinos A. B., Błoński P., Bakandritsos A., Ugolotti J., Dubecký M., Karlický F., Ranc V., Čépe K., Otyepka M., Zbořil R. Nat. Commun. 2017;8:14525. PubMed PMC
Ichihara J., Matsuo T., Hanafusa T., Ando T. J. Chem. Soc., Chem. Commun. 1986:793–794.
Chai J.-D., Head-Gordon M. Phys. Chem. Chem. Phys. 2008;10:6615–6620. PubMed
Ditchfield R., Hehre W. J., Pople J. A. J. Chem. Phys. 1971;54:724–728.
Marenich A. V., Cramer C. J., Truhlar D. G. J. Phys. Chem. B. 2009;113:6378–6396. PubMed
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J. and Fox D. J., Gaussian 09, Revision D.01, Wallingford CT, 2009.
Panich A. M., Shames A. I., Nakajima T. J. Phys. Chem. Solids. 2001;62:959–964.
Giraudet J., Dubois M., Hamwi A., Stone W. E. E., Pirotte P., Masin F. J. Phys. Chem. B. 2005;109:175–181. PubMed
Jain R., Sponsler M. B., Coms F. D., Dougherty D. A. J. Am. Chem. Soc. 1988;110:1356–1366.
Riplinger C., Kao J. P. Y., Rosen G. M., Kathirvelu V., Eaton G. R., Eaton S. S., Kutateladze A., Neese F. J. Am. Chem. Soc. 2009;131:10092–10106. PubMed PMC
Zoppellaro G., Enkelmann V., Geies A., Baumgarten M. Org. Lett. 2004;6:4929–4932. PubMed
Zoppellaro G., Geies A., Andersson K. K., Enkelmann V., Baumgarten M. Eur. J. Org. Chem. 2008:1431–1440.
Nair R. R., Sepioni M., Tsai I. L., Lehtinen O., Keinonen J., Krasheninnikov A. V., Thomson T., Geim A. K., Grigorieva I. V. Nat. Phys. 2012;8:199–202. PubMed
Palacios J. J., Fernández-Rossier J., Brey L. Phys. Rev. B: Condens. Matter Mater. Phys. 2008;77:195428.
Lieb E. H. Phys. Rev. Lett. 1989;62:1201–1204. PubMed
Burdeniuc J., Crabtree R. H. Science. 1996;271:340–341.
Kiplinger J. L., Richmond T. G. Chem. Commun. 1996:1115–1116.
Kiplinger J. L., Richmond T. G. J. Am. Chem. Soc. 1996;118:1805–1806.
Burdeniuc J., Siegbahn P. E. M., Crabtree R. H. New J. Chem. 1998;22:503–510.
Hughes R. P., LeHusebo T., Maddock S. M., Rheingold A. L., Guzei I. A. J. Am. Chem. Soc. 1997;119:10231–10232.
Richmond T. G. Angew. Chem., Int. Ed. 2000;39:3241–3244. PubMed
Borden W. T. Chem. Commun. 1998:1919–1925.
Sandford G. Tetrahedron. 2003;59:437–454.
Karlický F., Otyepka M. J. Chem. Theory Comput. 2013;9:4155–4164. PubMed
Ribas M. A., Singh A. K., Sorokin P. B., Yakobson B. I. Nano Res. 2011;4:143–152.
Kashtiban R. J., Dyson M. A., Nair R. R., Zan R., Wong S. L., Ramasse Q., Geim A. K., Bangert U., Sloan J. Nat. Commun. 2014;5:4902. PubMed
Wang B., Wang J. J., Zhu J. ACS Nano. 2014;8:1862–1870. PubMed
Suarez A. M., Theory and Simulation of Atomic Hydrogen, Fluorine, and Oxygen on Graphene, The Pennsylvania State University, 2012.
Lemal D. M. J. Org. Chem. 2004;69:1–11. PubMed
Lai W., Xu D., Wang X., Wang Z., Liu Y., Zhang X., Li Y., Liu X. Phys. Chem. Chem. Phys. 2017;19:24076–24081. PubMed
Samarakoon D. K., Chen Z., Nicolas C., Wang X.-Q. Small. 2011;7:965–969. PubMed
Buettner G. R. Free Radicals Biol. Med. 1987;3:259–303. PubMed
Humphries G. M. K. and McConnell H. M., Nitroxide Spin Labels, in Methods in Experimental Physics, ed. C. Marton, Academic Press, New York, 1982, vol. 20, pp. 53–122.
Ragno R., Zaghi A., Di Carmine G., Giovannini P. P., Bortolini O., Fogagnolo M., Molinari A., Venturini A., Massi A. Org. Biomol. Chem. 2016;14:9823–9835. PubMed
Wang Y., Noble A., Sandford C., Aggarwal V. K. Angew. Chem., Int. Ed. 2017;56:1810–1814. PubMed PMC
Adonin N. Y., Prikhod'ko S. A., Bardin V. V., Parmon V. N. Mendeleev Commun. 2009;19:260–262.
Fenton H., Tidmarsh I. S., Ward M. D. Dalton Trans. 2009:4199–4207. PubMed
Singh R. P., Shreeve J. n. M. Chem. Commun. 2001:1196–1197.
Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts
Alkynylation of graphene via the Sonogashira C-C cross-coupling reaction on fluorographene
2D Chemistry: Chemical Control of Graphene Derivatization