Reactivity of fluorographene is triggered by point defects: beyond the perfect 2D world

. 2018 Mar 08 ; 10 (10) : 4696-4707.

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29442111

Preparation of graphene derivatives using fluorographene (FG) as a precursor has become a key strategy for the large-scale synthesis of new 2-D materials (e.g. graphene acid, cyanographene, allyl-graphene) with tailored physicochemical properties. However, to gain full control over the derivatization process, it is essential to understand the reaction mechanisms and accompanying processes that affect the composition and structure of the final products. Despite the strength of C-F bonds and high chemical stability of perfluorinated hydrocarbons, FG is surprisingly susceptible to reactions under ambient conditions. There is clear evidence that nucleophilic substitution on FG is accompanied by spontaneous defluorination, and solvent-induced defluorination can occur even in the absence of any nucleophilic agent. Here, we show that distributed radical centers (fluorine vacancies) on the FG surface need to be taken into account in order to rationalize the defluorination mechanism. Depending on the environment, these radical centers can react as electron acceptors, electrophilic sites and/or cause homolytic bond cleavages. We also propose a new radical mechanism of FG defluorination in the presence of N,N'-dimethylformamide (DMF) solvent. Spin-trap experiments as well as 19F NMR measurements unambiguously confirmed formation of N,N'-dimethylformyl radicals and also showed that N,N'-dimethylcarbamoyl fluoride plays a key role in the proposed mechanism. These findings imply that point defects in 2D materials should be considered as key factor determining their chemical properties and reactivity.

Zobrazit více v PubMed

Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Science. 2004;306:666–669. PubMed

Duplock E. J., Scheffler M., Lindan P. J. D. Phys. Rev. Lett. 2004;92:225502. PubMed

Cheng S. H., Zou K., Okino F., Gutierrez H. R., Gupta A., Shen N., Eklund P. C., Sofo J. O., Zhu J. Phys. Rev. B: Condens. Matter Mater. Phys. 2010;81:205435.

Elias D. C., Nair R. R., Mohiuddin T. M. G., Morozov S. V., Blake P., Halsall M. P., Ferrari A. C., Boukhvalov D. W., Katsnelson M. I., Geim A. K., Novoselov K. S. Science. 2009;323:610–613. PubMed

Bulusheva L. G., Tur V. A., Fedorovskaya E. O., Asanov I. P., Pontiroli D., Riccò M., Okotrub A. V. Carbon. 2014;78:137–146.

Vizintin A., Lozinsek M., Chellappan R. K., Foix D., Krainc A., Mali G., Drazic G., Genorio B., Dedryvere R., Dominko R. Chem. Mater. 2015;27:7070–7081.

Xie J. J., Li C. L., Cui Z. H., Guo X. X. Adv. Funct. Mater. 2015;25:6519–6526.

Urbanova V., Karlicky F., Matej A., Sembera F., Janousek Z., Perman J. A., Ranc V., Cepe K., Michl J., Otyepka M., Zboril R. Nanoscale. 2016;8:12134–12142. PubMed

Liang S.-Z., Chen G., Harutyunyan A. R., Cole M. W., Sofo J. O. Appl. Phys. Lett. 2013;103:233108.

Das S., Sudhagar P., Verma V., Song D., Ito E., Lee S. Y., Kang Y. S., Choi W. Adv. Funct. Mater. 2011;21:3729–3736.

Liao L., Peng H. L., Liu Z. F. J. Am. Chem. Soc. 2014;136:12194–12200. PubMed

Park J., Yan M. D. Acc. Chem. Res. 2013;46:181–189. PubMed

Economopoulos S. P., Rotas G., Miyata Y., Shinohara H., Tagmatarchis N. ACS Nano. 2010;4:7499–7507. PubMed

Englert J. M., Dotzer C., Yang G. A., Schmid M., Papp C., Gottfried J. M., Steinruck H. P., Spiecker E., Hauke F., Hirsch A. Nat. Chem. 2011;3:279–286. PubMed

Bian S. D., Scott A. M., Cao Y., Liang Y., Osuna S., Houk K. N., Braunschweig A. B. J. Am. Chem. Soc. 2013;135:9240–9243. PubMed

Dubey G., Urcuyo R., Abb S., Rinke G., Burghard M., Rauschenbach S., Kern K. J. Am. Chem. Soc. 2014;136:13482–13485. PubMed

Eng A. Y. S., Chua C. K., Pumera M. Nanoscale. 2015;7:20256–20266. PubMed

Gilje S., Han S., Wang M., Wang K. L., Kaner R. B. Nano Lett. 2007;7:3394–3398. PubMed

Nair R. R., Ren W. C., Jalil R., Riaz I., Kravets V. G., Britnell L., Blake P., Schedin F., Mayorov A. S., Yuan S. J., Katsnelson M. I., Cheng H. M., Strupinski W., Bulusheva L. G., Okotrub A. V., Grigorieva I. V., Grigorenko A. N., Novoselov K. S., Geim A. K. Small. 2010;6:2877–2884. PubMed

Robinson J. T., Burgess J. S., Junkermeier C. E., Badescu S. C., Reinecke T. L., Perkins F. K., Zalalutdniov M. K., Baldwin J. W., Culbertson J. C., Sheehan P. E., Snow E. S. Nano Lett. 2010;10:3001–3005. PubMed

Zboril R., Karlicky F., Bourlinos A. B., Steriotis T. A., Stubos A. K., Georgakilas V., Safarova K., Jancik D., Trapalis C., Otyepka M. Small. 2010;6:2885–2891. PubMed PMC

Worsley K. A., Ramesh P., Mandal S. K., Niyogi S., Itkis M. E., Haddon R. C. Chem. Phys. Lett. 2007;445:51–56.

Dubecky M., Otyepkova E., Lazar P., Karlicky F., Petr M., Cepe K., Banas P., Zboril R., Otyepka M. J. Phys. Chem. Lett. 2015;6:1430–1434. PubMed

Lazar P., Chua C. K., Hola K., Zboril R., Otyepka M., Pumera M. Small. 2015;11:3790–3796. PubMed

Urbanova V., Hola K., Bourlinos A. B., Cepe K., Ambrosi A., Loo A. H., Pumera M., Karlicky F., Otyepka M., Zboril R. Adv. Mater. 2015;27:2305–2310. PubMed

Whitener K. E., Stine R., Robinson J. T., Sheehan P. E. J. Phys. Chem. C. 2015;119:10507–10512.

Stine R., Ciszek J. W., Barlow D. E., Lee W. K., Robinson J. T., Sheehan P. E. Langmuir. 2012;28:7957–7961. PubMed

Bosch-Navarro C., Walker M., Wilson N. R., Rourke J. P. J. Mater. Chem. C. 2015;3:7627–7631.

Li B. Y., He T. J., Wang Z. M., Cheng Z., Liu Y., Chen T., Lai W. C., Wang X., Liu X. Y. Phys. Chem. Chem. Phys. 2016;18:17495–17505. PubMed

Ye X. Y., Ma L. M., Yang Z. G., Wang J. Q., Wang H. G., Yang S. R. ACS Appl. Mater. Interfaces. 2016;8:7483–7488. PubMed

Bakandritsos A., Pykal M., Blonski P., Jakubec P., Chronopoulos D. D., Polakova K., Georgakilas V., Cepe K., Tomanec O., Ranc V., Bourlinos A. B., Zboril R., Otyepka M. ACS Nano. 2017;11:2982–2991. PubMed PMC

Kovaricek P., Bastl Z., Vales V., Kalbac M. Chem. – Eur. J. 2016;22:5404–5408. PubMed

Chronopoulos D. D., Bakandritsos A., Lazar P., Pykal M., Cepe K., Zboril R., Otyepka M. Chem. Mater. 2017;29:926–930. PubMed PMC

Wang X., Wang W. M., Liu Y., Ren M. M., Xiao H. N., Liu X. Y. Phys. Chem. Chem. Phys. 2016;18:3285–3293. PubMed

Tuček J., Holá K., Bourlinos A. B., Błoński P., Bakandritsos A., Ugolotti J., Dubecký M., Karlický F., Ranc V., Čépe K., Otyepka M., Zbořil R. Nat. Commun. 2017;8:14525. PubMed PMC

Ichihara J., Matsuo T., Hanafusa T., Ando T. J. Chem. Soc., Chem. Commun. 1986:793–794.

Chai J.-D., Head-Gordon M. Phys. Chem. Chem. Phys. 2008;10:6615–6620. PubMed

Ditchfield R., Hehre W. J., Pople J. A. J. Chem. Phys. 1971;54:724–728.

Marenich A. V., Cramer C. J., Truhlar D. G. J. Phys. Chem. B. 2009;113:6378–6396. PubMed

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J. and Fox D. J., Gaussian 09, Revision D.01, Wallingford CT, 2009.

Panich A. M., Shames A. I., Nakajima T. J. Phys. Chem. Solids. 2001;62:959–964.

Giraudet J., Dubois M., Hamwi A., Stone W. E. E., Pirotte P., Masin F. J. Phys. Chem. B. 2005;109:175–181. PubMed

Jain R., Sponsler M. B., Coms F. D., Dougherty D. A. J. Am. Chem. Soc. 1988;110:1356–1366.

Riplinger C., Kao J. P. Y., Rosen G. M., Kathirvelu V., Eaton G. R., Eaton S. S., Kutateladze A., Neese F. J. Am. Chem. Soc. 2009;131:10092–10106. PubMed PMC

Zoppellaro G., Enkelmann V., Geies A., Baumgarten M. Org. Lett. 2004;6:4929–4932. PubMed

Zoppellaro G., Geies A., Andersson K. K., Enkelmann V., Baumgarten M. Eur. J. Org. Chem. 2008:1431–1440.

Nair R. R., Sepioni M., Tsai I. L., Lehtinen O., Keinonen J., Krasheninnikov A. V., Thomson T., Geim A. K., Grigorieva I. V. Nat. Phys. 2012;8:199–202. PubMed

Palacios J. J., Fernández-Rossier J., Brey L. Phys. Rev. B: Condens. Matter Mater. Phys. 2008;77:195428.

Lieb E. H. Phys. Rev. Lett. 1989;62:1201–1204. PubMed

Burdeniuc J., Crabtree R. H. Science. 1996;271:340–341.

Kiplinger J. L., Richmond T. G. Chem. Commun. 1996:1115–1116.

Kiplinger J. L., Richmond T. G. J. Am. Chem. Soc. 1996;118:1805–1806.

Burdeniuc J., Siegbahn P. E. M., Crabtree R. H. New J. Chem. 1998;22:503–510.

Hughes R. P., LeHusebo T., Maddock S. M., Rheingold A. L., Guzei I. A. J. Am. Chem. Soc. 1997;119:10231–10232.

Richmond T. G. Angew. Chem., Int. Ed. 2000;39:3241–3244. PubMed

Borden W. T. Chem. Commun. 1998:1919–1925.

Sandford G. Tetrahedron. 2003;59:437–454.

Karlický F., Otyepka M. J. Chem. Theory Comput. 2013;9:4155–4164. PubMed

Ribas M. A., Singh A. K., Sorokin P. B., Yakobson B. I. Nano Res. 2011;4:143–152.

Kashtiban R. J., Dyson M. A., Nair R. R., Zan R., Wong S. L., Ramasse Q., Geim A. K., Bangert U., Sloan J. Nat. Commun. 2014;5:4902. PubMed

Wang B., Wang J. J., Zhu J. ACS Nano. 2014;8:1862–1870. PubMed

Suarez A. M., Theory and Simulation of Atomic Hydrogen, Fluorine, and Oxygen on Graphene, The Pennsylvania State University, 2012.

Lemal D. M. J. Org. Chem. 2004;69:1–11. PubMed

Lai W., Xu D., Wang X., Wang Z., Liu Y., Zhang X., Li Y., Liu X. Phys. Chem. Chem. Phys. 2017;19:24076–24081. PubMed

Samarakoon D. K., Chen Z., Nicolas C., Wang X.-Q. Small. 2011;7:965–969. PubMed

Buettner G. R. Free Radicals Biol. Med. 1987;3:259–303. PubMed

Humphries G. M. K. and McConnell H. M., Nitroxide Spin Labels, in Methods in Experimental Physics, ed. C. Marton, Academic Press, New York, 1982, vol. 20, pp. 53–122.

Ragno R., Zaghi A., Di Carmine G., Giovannini P. P., Bortolini O., Fogagnolo M., Molinari A., Venturini A., Massi A. Org. Biomol. Chem. 2016;14:9823–9835. PubMed

Wang Y., Noble A., Sandford C., Aggarwal V. K. Angew. Chem., Int. Ed. 2017;56:1810–1814. PubMed PMC

Adonin N. Y., Prikhod'ko S. A., Bardin V. V., Parmon V. N. Mendeleev Commun. 2009;19:260–262.

Fenton H., Tidmarsh I. S., Ward M. D. Dalton Trans. 2009:4199–4207. PubMed

Singh R. P., Shreeve J. n. M. Chem. Commun. 2001:1196–1197.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Solvent Controlled Generation of Spin Active Polarons in Two-Dimensional Material under UV Light Irradiation

. 2024 Jun 05 ; 146 (22) : 15010-15018. [epub] 20240502

Metal-free cysteamine-functionalized graphene alleviates mutual interferences in heavy metal electrochemical detection

. 2023 Feb 20 ; 25 (4) : 1647-1657. [epub] 20230207

Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts

. 2022 Sep 29 ; 14 (37) : 13490-13499. [epub] 20220929

Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor

. 2022 Feb 16 ; 15 (2) : 740-748. [epub] 20220107

Graphene with Covalently Grafted Amino Acid as a Route Toward Eco-Friendly and Sustainable Supercapacitors

. 2021 Sep 20 ; 14 (18) : 3904-3914. [epub] 20210818

Enhancing and Tuning the Nonlinear Optical Response and Wavelength-Agile Strong Optical Limiting Action of N-octylamine Modified Fluorographenes

. 2020 Nov 23 ; 10 (11) : . [epub] 20201123

Alkynylation of graphene via the Sonogashira C-C cross-coupling reaction on fluorographene

. 2019 Jan 22 ; 55 (8) : 1088-1091.

2D Chemistry: Chemical Control of Graphene Derivatization

. 2018 Jul 05 ; 9 (13) : 3580-3585. [epub] 20180615

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...