Graphene with Covalently Grafted Amino Acid as a Route Toward Eco-Friendly and Sustainable Supercapacitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000754
Ministry of Education, Youth, and Sports
683024
ERC project
19-27454X
Czech Science Foundation
LM2018124
Czech Science Foundation
PubMed
34288502
PubMed Central
PMC8518929
DOI
10.1002/cssc.202101039
Knihovny.cz E-zdroje
- Klíčová slova
- arginine, fluorographene, graphene, supercapacitor, ultracapacitor,
- Publikační typ
- časopisecké články MeSH
Eco-friendly, electrochemically active electrode materials based on covalent graphene derivatives offer enormous potential for energy storage applications. However, covalent grafting of functional groups onto the graphene surface is challenging due to its low reactivity. Here, fluorographene chemistry was employed to graft an arginine moiety via its guanidine group homogeneously on both sides of graphene. By tuning the reaction conditions and adding a non-toxic pore-forming agent, an optimum degree of functionalization and hierarchical porosity was achieved in the material. This tripled the specific surface area and yielded a high capacitance value of approximately 390 F g-1 at a current density of 0.25 A g-1 . The applicability of the electrode material was investigated under typical operating conditions by testing an assembled supercapacitor device for up to 30000 charging/discharging cycles, revealing capacitance retention of 82.3 %. This work enables the preparation of graphene derivatives with covalently grafted amino acids for technologically important applications, such as supercapacitor-based energy storage.
Zobrazit více v PubMed
Luderer G., Pehl M., Arvesen A., Gibon T., Bodirsky B. L., de Boer H. S., Fricko O., Hejazi M., Humpenöder F., Iyer G., Mima S., Mouratiadou I., Pietzcker R. C., Popp A., van den Berg M., van Vuuren D., Hertwich E. G., Nat. Commun. 2019, 10, 5229. PubMed PMC
Luo Y., Yang C., Tian Y., Tang Y., Yin X., Que W., J. Power Sources 2020, 450, 227694.
Sethi M., Shenoy U. S., Bhat D. K., J. Alloys Compd. 2021, 854, 157190.
Acharya J., Ko T. H., Seo M.-K., Khil M.-S., Kim H.-Y., Kim B.-S., ACS Appl. Mater. Interfaces 2020, 3, 7383.
Han J., Ping Y., Yang S., Zhang Y., Qian L., Li J., Liu L., Xiong B., Fang P., He C., Diamond Relat. Mater. 2020, 109, 108044.
Kamboj N., Purkait T., Das M., Sarkar S., Hazra K. S., Dey R. S., Energy Environ. Sci. 2019, 12, 2507.
Liu C., Yu Z., Neff D., Zhamu A., Jang B. Z., Nano Lett. 2010, 10, 4863. PubMed
Geim A. K., Novoselov K. S., Nat. Mater. 2007, 6, 183. PubMed
Lee J.-U., Yoon D., Cheong H., Nano Lett. 2012, 12, 4444. PubMed
Emadi A., Honarvar B., Emadi M., Nafar M., Russ. J. Appl. Chem. 2020, 93, 1160.
Hou L., Kong C., Hu Z., Yang Y., Wu H., Li Z., Wang X., Yan P., Feng X., Appl. Surf. Sci. 2020, 508, 145192.
El-Gendy D. M., Ghany N. A. A., El Sherbini E. E. F., Allam N. K., Sci. Rep. 2017, 7, 43104. PubMed PMC
Deng L., Zhou C., Ma Z., Fan G., J. Colloid Interface Sci. 2020, 561, 416. PubMed
Zhou X., Meng T., Yi F., Shu D., Han D., Zhu Z., Gao A., Liu C., Li X., Yang K., Yi H., J. Power Sources 2020, 475, 228554.
Wang Q., Gao H., Zhao C., Yue H., Gao G., Yu J., Kwon Y.-U., Zhao Y., Electrochim. Acta 2021, 369, 137700.
Yang Y., Ma W., Zhu H., Meng H., Wang C., Ma F., Hu Z., New J. Chem. 2020, 44, 16821.
Bourlinos A. B., Bakandritsos A., Liaros N., Couris S., Safarova K., Otyepka M., Zbořil R., Chem. Phys. Lett. 2012, 543, 101.
Bourlinos A. B., Safarova K., Siskova K., Zbořil R., Carbon 2012, 50, 1425.
Whitener K. E., Stine R., Robinson J. T., Sheehan P. E., J. Phys. Chem. C 2015, 119, 10507.
Medveď M., Zoppellaro G., Ugolotti J., Matochová D., Lazar P., Pospíšil T., Bakandritsos A., Tuček J., Zbořil R., Otyepka M., Nanoscale 2018, 10, 4696. PubMed PMC
Matochová D., Medved’ M., Bakandritsos A., Steklý T., Zbořil R., Otyepka M., J. Phys. Chem. Lett. 2018, 9, 3580. PubMed PMC
Bakandritsos A., Chronopoulos D. D., Jakubec P., Pykal M., Čépe K., Steriotis T., Kalytchuk S., Petr M., Zbořil R., Otyepka M., Adv. Funct. Mater. 2018, 28, 1801111.
Vermisoglou E. C., Jakubec P., Bakandritsos A., Pykal M., Talande S., Kupka V., Zbořil R., Otyepka M., Chem. Mater. 2019, 31, 4698. PubMed PMC
Hou K., Gong P., Wang J., Yang Z., Wang Z., Yang S., RSC Adv. 2014, 4, 56543.
Rafieerad A. R., Bushroa A. R., Amiri A., Kalaiselvam K., Vellasamy K., Vadivelu J., J. Hazard. Mater. 2018, 360, 132. PubMed
Chen D., Chen Q., Liu T., Kang J., Xu R., Cao Y., Xiang M., RSC Adv. 2019, 9, 20149. PubMed PMC
Pandian C. J., Palanivel R., J. Exp. Nanosci. 2016, 11, 1193.
Manzoor K., Ahmad M., Ahmad S., Ikram S., RSC Adv. 2019, 9, 7890. PubMed PMC
Li X., Jiang G., Shen X., Li G., ACS Sustainable Chem. Eng. 2020, 8, 1899.
Nakajima T., Gupta V., Ohzawa Y., Groult H., Mazej Z., Žemva B., J. Power Sources 2004, 137, 80.
Zhu J., Zhang H., Chen R., Liu Q., Liu J., Yu J., Li R., Zhang M., Wang J., J. Colloid Interface Sci. 2019, 543, 192. PubMed
Zhang M., Ma Y., Zhu Y., Che J., Xiao Y., Carbon 2013, 63, 149.
Bakandritsos A., Pykal M., Błoński P., Jakubec P., Chronopoulos D. D., Poláková K., Georgakilas V., Čépe K., Tomanec O., Ranc V., Bourlinos A. B., Zbořil R., Otyepka M., ACS Nano 2017, 11, 2982. PubMed PMC
Boonpakdee D., Guajardo Yévenes C. F., Surareungchai W., La-o-vorakiat C., J. Mater. Chem. A 2018, 6, 7162.
Oh Y. J., Yoo J. J., Kim Y. I., Yoon J. K., Yoon H. N., Kim J.-H., Park S. B., Electrochim. Acta 2014, 116, 118.
Lee Y.-H., Chang K.-H., Hu C.-C., J. Power Sources 2013, 227, 300.
Yu M., Wang Z., Zhang H., Zhang P., Zhang T., Lu X., Feng X., Nano Energy 2019, 65, 103987.
Yang M., Zhou Z., Adv. Sci. 2017, 10. PubMed PMC
Zhang L., Shi G., J. Phys. Chem. C 2011, 115, 17206.
Wang Y., Shi Z., Huang Y., Ma Y., Wang C., Chen M., Chen Y., J. Phys. Chem. C 2009, 113, 13103.
Zhang J., Zhao X. S., ChemSusChem 2012, 5, 818. PubMed
Eftekhari A., ACS Sustainable Chem. Eng. 2019, 7, 3692.
Kaiser E., Colescott R. L., Bossinger C. D., Cook P. I., Anal. Biochem. 1970, 34, 595. PubMed
Soriano M. L., Cárdenas S., J. Carbon Res. 2019, 5, 68.
Rouquerol J., Rouquerol F., Llewellyn P., Maurin G., Sing K. S. W., Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Elsevier Science, 2013.
Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C., J. Comput. Chem. 2005, 26, 1701. PubMed
Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A., J. Am. Chem. Soc. 1995, 117, 5179.
Cheng A., Steele W. A., J. Chem. Phys. 1990, 92, 3858.
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L., J. Chem. Phys. 1983, 79, 926.
Bussi G., Donadio D., Parrinello M., J. Chem. Phys. 2007, 126, 014101. PubMed
Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R., J. Chem. Phys. 1984, 81, 3684.
Hess B., Bekker H., Berendsen H. J. C., J. Comput. Chem. 1997, 18, 1463.
Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts