Metal-free cysteamine-functionalized graphene alleviates mutual interferences in heavy metal electrochemical detection
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36824602
PubMed Central
PMC9940303
DOI
10.1039/d2gc02978b
PII: d2gc02978b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Heavy metal pollutants are of great concern to environmental monitoring due to their potent toxicity. Electrochemical detection, one of the main techniques, is hindered by the mutual interferences of various heavy metal ions in practical use. In particular, the sensitivity of carbon electrodes to Cd2+ ions (one of the most toxic heavy metals) is often overshadowed by some heavy metals (e.g. Pb2+ and Cu2+). To mitigate interference, metallic particles/films (e.g. Hg, Au, Bi, and Sn) typically need to be embedded in the carbon electrodes. However, these additional metallic materials may face issues of secondary pollution and unsustainability. In this study, a metal-free and sustainable nanomaterial, namely cysteamine covalently functionalized graphene (GSH), was found to lead to a 6-fold boost in the Cd2+ sensitivity of the screen-printed carbon electrode (SPCE), while the sensitivities to Pb2+ and Cu2+ were not influenced in simultaneous detection. The selective enhancement could be attributed to the grafted thiols on GSH sheets with good affinity to Cd2+ ions based on Pearson's hard and soft acid and base principle. More intriguingly, the GSH-modified SPCE (GSH-SPCE) featured high reusability with extended cycling times (23 times), surpassing the state-of-art SPCEs modified by non-covalently functionalized graphene derivatives. Last, the GSH-SPCE was validated in tap water.
Zobrazit více v PubMed
Csuros M., Environmental Sampling and Analysis for Technicians, CRC Press, 1st edn, 1994
Aragay G. Pons J. Merkoçi A. Chem. Rev. 2011;111:3433–3458. doi: 10.1021/cr100383r. PubMed DOI
List of chemicals for Water Framework Directive assessments, https://www.gov.uk/government/publications/list-of-chemicals-for-water-framework-directive-assessments
Schwarzenbach R. P. Escher B. I. Fenner K. Hofstetter T. B. Johnson C. A. von Gunten U. Wehrli B. Science. 2006;313:1072–1077. doi: 10.1126/science.1127291. PubMed DOI
Jomova K. Valko M. Toxicology. 2011;283:65–87. doi: 10.1016/j.tox.2011.03.001. PubMed DOI
Osteryoung J. G. Osteryoung R. A. Anal. Chem. 1985;57:1–6. doi: 10.1021/ac00279a004. PubMed DOI
Mirceski V. Skrzypek S. Stojanov L. ChemTexts. 2018;4:1–14. doi: 10.1007/s40828-018-0073-0. DOI
Xu K. Clara P. Marchoud A. Crespo A. Chemosensors. 2021;9:107. doi: 10.3390/chemosensors9050107. DOI
Honeychurch K. C. Hart J. P. TrAC, Trends Anal. Chem. 2003;22:456–469. doi: 10.1016/S0165-9936(03)00703-9. DOI
Cadevall M. Ros J. Merkoçi A. Electrophoresis. 2015;36:1872–1879. doi: 10.1002/elps.201400609. PubMed DOI
Borrill A. J. Reily N. E. Macpherson J. V. Analyst. 2019;144:6834–6849. doi: 10.1039/C9AN01437C. PubMed DOI
Huangfu C. Fu L. Li Y. Li X. Du H. Ye J. Electroanalysis. 2013;25:2238–2243. doi: 10.1002/elan.201300239. DOI
Xiong S. Yang B. Cai D. Qiu G. Wu Z. Electrochim. Acta. 2015;185:52–61. doi: 10.1016/j.electacta.2015.10.114. DOI
Wei Y. Yang R. Chen X. Wang L. Liu J. H. Huang X. J. Anal. Chim. Acta. 2012;755:54–61. doi: 10.1016/j.aca.2012.10.021. PubMed DOI
Toghill K. E. Xiao L. Wildgoose G. G. Compton R. G. Electroanalysis. 2009;21:1113–1118. doi: 10.1002/elan.200904547. DOI
Li Y. Sun G. Zhang Y. Ge C. Bao N. Wang Y. Microchim. Acta. 2014;181:751–757. doi: 10.1007/s00604-013-1082-8. DOI
Willemse C. M. Tlhomelang K. Jahed N. Baker P. G. Iwuoha E. I. Sensors. 2011;11:3970–3987. doi: 10.3390/s110403970. PubMed DOI PMC
Lee P. M. Chen Z. Li L. Liu E. Electrochim. Acta. 2015;174:207–214. doi: 10.1016/j.electacta.2015.05.092. DOI
Al-Hossainy A. F. Abd-Elmageed A. A. I. Ibrahim A. T. A. Arabian J. Chem. 2019;12:2853–2863. doi: 10.1016/j.arabjc.2015.06.020. DOI
Zheng J. Rahim M. A. Tang J. Allioux F.-M. Kalantar-Zadeh K. Adv. Mater. Technol. 2022;7:2100760. doi: 10.1002/admt.202100760. DOI
CRC Handbook of Chemistry and Physics, 97th edn, pp. 14–17
Mohan R. Nat. Chem. 2010;2:336. doi: 10.1038/nchem.609. PubMed DOI
Stephens L. J. Munuganti S. Duffin R. N. Werrett M. V. Andrews P. C. Inorg. Chem. 2020;59:3494–3508. doi: 10.1021/acs.inorgchem.9b03550. PubMed DOI
Hwang J.-H. Wang X. Zhao D. Rex M. M. Cho H. J. Lee W. H. Electrochim. Acta. 2019;298:440–448. doi: 10.1016/j.electacta.2018.12.122. DOI
Hočevar S. B. Švancara I. Vytřas K. Ogorevc B. Electrochim. Acta. 2005;51:706–710. doi: 10.1016/j.electacta.2005.05.023. DOI
Sahoo P. K. Panigrahy B. Sahoo S. Satpati A. K. Li D. Bahadur D. Biosens. Bioelectron. 2013;43:293–296. doi: 10.1016/j.bios.2012.12.031. PubMed DOI
Yang Q. Nagar B. Alvarez-Diduk R. Balsells M. Farinelli A. Bloisi D. Proia L. Espinosa C. Ordeix M. Knutz T. De Vito-Francesco E. Allabashi R. Merkoçi A. ACS ES&T Water. 2021;1:2459–2555. PubMed PMC
Zhu X. Liu B. Hou H. Huang Z. Zeinu K. M. Huang L. Yuan X. Guo D. Hu J. Yang J. Electrochim. Acta. 2017;248:46–57. doi: 10.1016/j.electacta.2017.07.084. DOI
Chu Y. Gao F. Gao F. Wang Q. J. Electroanal. Chem. 2019;835:293–300. doi: 10.1016/j.jelechem.2019.01.053. DOI
Song Z. Y. Xiao X. Y. Chen S. H. Li Y. Yang Y. F. Huang C. C. Duan W. Yang M. Li P. H. Huang X. J. Anal. Chem. 2022;94:6225–6233. doi: 10.1021/acs.analchem.1c05617. PubMed DOI
Zhou W. Y. Li S. S. Song J. Y. Jiang M. Jiang T. J. Liu J. Y. Liu J. H. Huang X. J. Anal. Chem. 2018;90:4328–4337. doi: 10.1021/acs.analchem.7b02315. PubMed DOI
Wu W. Jia M. Wang Z. Zhang W. Zhang Q. Liu G. Zhang Z. Li P. Microchim. Acta. 2019;186:0–9. PubMed
Choi S. M. Kim D. M. Jung O. S. Shim Y. B. Anal. Chim. Acta. 2015;892:77–84. doi: 10.1016/j.aca.2015.08.037. PubMed DOI
Malhotra M. Puglia M. Kalluri A. Chowdhury D. Kumar C. V. Sens. Actuators Rep. 2022:100077. doi: 10.1016/j.snr.2022.100077. DOI
Georgakilas V. Otyepka M. Bourlinos A. B. Chandra V. Kim N. Kemp K. C. Hobza P. Zboril R. Kim K. S. Chem. Rev. 2012;112:6156–6214. doi: 10.1021/cr3000412. PubMed DOI
Béraud A. Sauvage M. Bazán C. M. Tie M. Bencherif A. Bouilly D. Analyst. 2021;146:403–428. doi: 10.1039/D0AN01661F. PubMed DOI
Liu Y. Zhou J. Zhang X. Liu Z. Wan X. Tian J. Wang T. Chen Y. Carbon. 2009;47:3113–3121. doi: 10.1016/j.carbon.2009.07.027. DOI
Gilje S. Dubin S. Badakhshan A. Farrar J. Danczyk S. A. Kaner R. B. Adv. Mater. 2010;22:419–423. doi: 10.1002/adma.200901902. PubMed DOI
Matochová D. Medved’ M. Bakandritsos A. Steklý T. Zbořil R. Otyepka M. J. Phys. Chem. Lett. 2018;9:3580–3585. doi: 10.1021/acs.jpclett.8b01596. PubMed DOI PMC
Medveď M. Zoppellaro G. Ugolotti J. Matochová D. Lazar P. Pospíšil T. Bakandritsos A. Tuček J. Zbořil R. Otyepka M. Nanoscale. 2018;10:4696–4707. doi: 10.1039/C7NR09426D. PubMed DOI PMC
Bakandritsos A. Pykal M. Boński P. Jakubec P. Chronopoulos D. D. Poláková K. Georgakilas V. Čépe K. Tomanec O. Ranc V. Bourlinos A. B. Zbořil R. Otyepka M. ACS Nano. 2017;11:2982–2991. doi: 10.1021/acsnano.6b08449. PubMed DOI PMC
Šedajová V. Jakubec P. Bakandritsos A. Ranc V. Otyepka M. Nanomaterials. 2020;10:1731. doi: 10.3390/nano10091731. PubMed DOI PMC
Flauzino J. M. R. Nguyen E. P. Yang Q. Rosati G. Panáček D. Brito-Madurro A. G. Madurro J. M. Bakandritsos A. Otyepka M. Merkoçi A. Biosens. Bioelectron. 2022;195:113628. doi: 10.1016/j.bios.2021.113628. PubMed DOI
Bakandritsos A. Kadam R. G. Kumar P. Zoppellaro G. Medved’ M. Tuček J. Montini T. Tomanec O. Andrýsková P. Drahoš B. Varma R. S. Otyepka M. Gawande M. B. Fornasiero P. Zbořil R. Adv. Mater. 2019;31:1900323. doi: 10.1002/adma.201900323. PubMed DOI
Henderson W. A. Schultz C. J. J. Org. Chem. 1962;27:4643–4646. doi: 10.1021/jo01059a507. DOI
Shang J. Xue F. Ding E. Chem. Commun. 2015;51:15811–15814. doi: 10.1039/C5CC06151B. PubMed DOI
Pérez-Ràfols C. Serrano N. Díaz-Cruz J. M. Ariño C. Esteban M. Talanta. 2016;155:8–13. doi: 10.1016/j.talanta.2016.04.011. PubMed DOI
Abdulla M. Ali A. Jamal R. Bakri T. Wu W. Abdiryim T. Polymers. 2019;11:1–19. doi: 10.3390/polym11050815. PubMed DOI PMC
Chronopoulos D. D. Bakandritsos A. Pykal M. Zbořil R. Otyepka M. Appl. Mater. Today. 2017;9:60–70. doi: 10.1016/j.apmt.2017.05.004. PubMed DOI PMC
Vermisoglou E. C. Jakubec P. Bakandritsos A. Kupka V. Pykal M. Šedajová V. Vlček J. Tomanec O. Scheibe M. Zbořil R. Otyepka M. ChemSusChem. 2021;14:3904–3914. doi: 10.1002/cssc.202101039. PubMed DOI PMC
Tantis I. Bakandritsos A. Zaoralová D. Medveď M. Jakubec P. Havláková J. Zbořil R. Otyepka M. Adv. Funct. Mater. 2021;31:2101326. doi: 10.1002/adfm.202101326. DOI
Zhang S. Front. Energy Res. 2013;1:10.
Mishra A. Jha B. Bioresour. Technol. 2009;100:3382–3386. doi: 10.1016/j.biortech.2009.02.006. PubMed DOI
Ahn M. Liu R. Lee C. Lee W. J. Nanomater. 2019;2019:6464713.
Ulman A. Ioffe M. Patolsky F. Haas E. Reuvenov D. J. Nanobiotechnol. 2011;9:26. doi: 10.1186/1477-3155-9-26. PubMed DOI PMC
Zaoralová D. Hrubý V. Šedajová V. Mach R. Kupka V. Ugolotti J. Bakandritsos A. Medved’ M. Otyepka M. ACS Sustainable Chem. Eng. 2020;8:4764–4772. doi: 10.1021/acssuschemeng.9b07161. DOI
Honeychurch K. C. Hart J. P. Cowell D. C. Electroanalysis. 2000;12:171–177. doi: 10.1002/(SICI)1521-4109(200002)12:3<171::AID-ELAN171>3.0.CO;2-Q. DOI
Moreno-Baron L. Merkoçi A. Alegret S. Electrochim. Acta. 2003;48:2599–2605. doi: 10.1016/S0013-4686(03)00303-7. DOI
Hadi M. Rouhollahi A. Yousefi M. J. Appl. Electrochem. 2012;42:179–187. doi: 10.1007/s10800-012-0386-4. DOI
Liu N. Zhao G. Liu G. J. Electroanal. Chem. 2021;889:115227. doi: 10.1016/j.jelechem.2021.115227. DOI
Pan D. Wang Y. Chen Z. Lou T. Qin W. Anal. Chem. 2009;81:5088–5094. doi: 10.1021/ac900417e. PubMed DOI
Kudr J. Zhao L. Nguyen E. P. Arola H. Nevanen T. K. Adam V. Zitka O. Merkoçi A. Biosens. Bioelectron. 2020;156:112109. doi: 10.1016/j.bios.2020.112109. PubMed DOI
Ho T. L. Chem. Rev. 1975;75:1–20. doi: 10.1021/cr60293a001. DOI
Bjørklund G. Crisponi G. Nurchi V. M. Cappai R. Djordjevic A. B. Aaseth J. Molecules. 2019;24:1–32. doi: 10.3390/molecules24183247. PubMed DOI PMC
Ambrosi A. Chua C. K. Bonanni A. Pumera M. Chem. Rev. 2014;114:7150–7188. doi: 10.1021/cr500023c. PubMed DOI