New Limits for Stability of Supercapacitor Electrode Material Based on Graphene Derivative

. 2020 Aug 31 ; 10 (9) : . [epub] 20200831

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32878342

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000754 Ministry of Education, Youth, and Sports of the Czech Republic
CZ.1.05/2.1.00/19.0377 Ministry of Education, Youth, and Sports of the Czech Republic
IGA_PrF_2019_031 Internal Student Grant Agency of Palacký University in Olomouc
683024 ERC Consolidator Grant

Supercapacitors offer a promising alternative to batteries, especially due to their excellent power density and fast charging rate capability. However, the cycling stability and material synthesis reproducibility need to be significantly improved to enhance the reliability and durability of supercapacitors in practical applications. Graphene acid (GA) is a conductive graphene derivative dispersible in water that can be prepared on a large scale from fluorographene. Here, we report a synthesis protocol with high reproducibility for preparing GA. The charging/discharging rate stability and cycling stability of GA were tested in a two-electrode cell with a sulfuric acid electrolyte. The rate stability test revealed that GA could be repeatedly measured at current densities ranging from 1 to 20 A g-1 without any capacitance loss. The cycling stability experiment showed that even after 60,000 cycles, the material kept 95.3% of its specific capacitance at a high current density of 3 A g-1. The findings suggested that covalent graphene derivatives are lightweight electrode materials suitable for developing supercapacitors with extremely high durability.

Zobrazit více v PubMed

Lewis N.S., Nocera D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA. 2006;103:15729–15735. doi: 10.1073/pnas.0603395103. PubMed DOI PMC

Pomerantseva E., Bonaccorso F., Feng X., Cui Y., Gogotsi Y. Energy storage: The future enabled by nanomaterials. Science. 2019;366:eaan8285. doi: 10.1126/science.aan8285. PubMed DOI

Raymundo-Piñero E., Leroux F., Béguin F. A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer. Adv. Mater. 2006;18:1877–1882. doi: 10.1002/adma.200501905. DOI

Salunkhe R.R., Lee Y.-H., Chang K.-H., Li J.-M., Simon P., Tang J., Torad N.L., Hu C.-C., Yamauchi Y. Nanoarchitectured Graphene-Based Supercapacitors for Next-Generation Energy-Storage Applications. Chem. Eur. J. 2014;20:13838–13852. doi: 10.1002/chem.201403649. PubMed DOI

Wang G., Zhang L., Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012;41:797–828. doi: 10.1039/C1CS15060J. PubMed DOI

Conway B.E., Birss V., Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources. 1997;66:1–14. doi: 10.1016/S0378-7753(96)02474-3. DOI

Zhai S., Wang C., Karahan H.E., Wang Y., Chen X., Sui X., Huang Q., Liao X., Wang X., Chen Y. Nano-RuO2-Decorated Holey Graphene Composite Fibers for Micro-Supercapacitors with Ultrahigh Energy Density. Small. 2018;14:1800582. doi: 10.1002/smll.201800582. PubMed DOI

Han Z.J., Pineda S., Murdock A.T., Seo D.H., Ostrikov K., Bendavid A. RuO2-coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. J. Mater. Chem. A. 2017;5:17293–17301. doi: 10.1039/C7TA03355A. DOI

Wang J.-G., Kang F., Wei B. Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater. Sci. 2015;74:51–124. doi: 10.1016/j.pmatsci.2015.04.003. DOI

Kang J., Hirata A., Kang L., Zhang X., Hou Y., Chen L., Li C., Fujita T., Akagi K., Chen M. Enhanced Supercapacitor Performance of MnO2 by Atomic Doping. Angew. Chem. Int. Ed. 2013;52:1664–1667. doi: 10.1002/anie.201208993. PubMed DOI

Chen S., Zhu J., Wu X., Han Q., Wang X. Graphene Oxide–MnO2 Nanocomposites for Supercapacitors. ACS Nano. 2010;4:2822–2830. doi: 10.1021/nn901311t. PubMed DOI

Gu T., Wei B. High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled MnO2/CNT and Fe2O3/CNT macrofilms. J. Mater. Chem. A. 2016;4:12289–12295. doi: 10.1039/C6TA04712B. DOI

Shi Z., Xing L., Liu Y., Gao Y., Liu J. A porous biomass-based sandwich-structured Co3O4@Carbon Fiber@Co3O4 composite for high-performance supercapacitors. Carbon. 2018;129:819–825. doi: 10.1016/j.carbon.2017.12.105. DOI

Liao Q., Li N., Jin S., Yang G., Wang C. All-Solid-State Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene. ACS Nano. 2015;9:5310–5317. doi: 10.1021/acsnano.5b00821. PubMed DOI

Wang J., Wang J., Kong Z., Lv K., Teng C., Zhu Y. Conducting-Polymer-Based Materials for Electrochemical Energy Conversion and Storage. Adv. Mater. 2017;29:1703044. doi: 10.1002/adma.201703044. PubMed DOI

Meng Q., Cai K., Chen Y., Chen L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy. 2017;36:268–285. doi: 10.1016/j.nanoen.2017.04.040. DOI

Jyothibasu J.P., Lee R.-H. Green synthesis of polypyrrole tubes using curcumin template for excellent electrochemical performance in supercapacitors. J. Mater. Chem. A. 2020;8:3186–3202. doi: 10.1039/C9TA11934E. DOI

Jiang H., Cai X., Qian Y., Zhang C., Zhou L., Liu W., Li B., Lai L., Huang W. V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors. J. Mater. Chem. A. 2017;5:23727–23736. doi: 10.1039/C7TA07727K. DOI

Augustyn V., Simon P., Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014;7:1597. doi: 10.1039/c3ee44164d. DOI

Hao L., Li X., Zhi L. Carbonaceous Electrode Materials for Supercapacitors. Adv. Mater. 2013;25:3899–3904. doi: 10.1002/adma.201301204. PubMed DOI

Yan J., Wang Q., Wei T., Fan Z. Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Adv. Energy Mater. 2014;4:1300816. doi: 10.1002/aenm.201300816. DOI

Li B., Dai F., Xiao Q., Yang L., Shen J., Zhang C., Cai M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 2016;9:102–106. doi: 10.1039/C5EE03149D. DOI

Hou J., Cao C., Idrees F., Ma X. Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors. ACS Nano. 2015;9:2556–2564. doi: 10.1021/nn506394r. PubMed DOI

Lin T., Chen I.-W., Liu F., Yang C., Bi H., Xu F., Huang F. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science. 2015;350:1508–1513. doi: 10.1126/science.aab3798. PubMed DOI

Yuan C., Liu X., Jia M., Luo Z., Yao J. Facile preparation of N- and O-doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors. J. Mater. Chem. A. 2015;3:3409–3415. doi: 10.1039/C4TA06411A. DOI

Raj C.J., Rajesh M., Manikandan R., Yu K.H., Anusha J.R., Ahn J.H., Kim D.-W., Park S.Y., Kim B.C. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin. J. Power Sources. 2018;386:66–76. doi: 10.1016/j.jpowsour.2018.03.038. DOI

Zhao G., Chen C., Yu D., Sun L., Yang C., Zhang H., Sun Y., Besenbacher F., Yu M. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy. 2018;47:547–555. doi: 10.1016/j.nanoen.2018.03.016. DOI

Nasini U.B., Bairi V.G., Ramasahayam S.K., Bourdo S.E., Viswanathan T., Shaikh A.U. Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application. J. Power Sources. 2014;250:257–265. doi: 10.1016/j.jpowsour.2013.11.014. DOI

Yu X., Kang Y., Park H.S. Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon. 2016;101:49–56. doi: 10.1016/j.carbon.2016.01.073. DOI

Yang F., Ma X., Cai W.-B., Song P., Xu W. Nature of Oxygen-Containing Groups on Carbon for High-Efficiency Electrocatalytic CO2 Reduction Reaction. J. Am. Chem. Soc. 2019;141:20451–20459. doi: 10.1021/jacs.9b11123. PubMed DOI

Calvo E.G., Rey-Raap N., Arenillas A., Menéndez J.A. The effect of the carbon surface chemistry and electrolyte pH on the energy storage of supercapacitors. RSC Adv. 2014;4:32398–32404. doi: 10.1039/C4RA04430D. DOI

Pandolfo A.G., Hollenkamp A.F. Carbon properties and their role in supercapacitors. J. Power Sources. 2006;157:11–27. doi: 10.1016/j.jpowsour.2006.02.065. DOI

Cao H., Peng X., Zhao M., Liu P., Xu B., Guo J. Oxygen functional groups improve the energy storage performances of graphene electrochemical supercapacitors. RSC Adv. 2018;8:2858–2865. doi: 10.1039/C7RA12425B. PubMed DOI PMC

Cherusseri J., Kar K.K. Hierarchically mesoporous carbon nanopetal based electrodes for flexible supercapacitors with super-long cyclic stability. J. Mater. Chem. A. 2015;3:21586–21598. doi: 10.1039/C5TA05603A. DOI

Chen Y., Yan Q., Zhang S., Lu L., Xie B., Xie T., Zhang Y., Wu Y., Zhang Y., Liu D. Buffering agents-assisted synthesis of nitrogen-doped graphene with oxygen-rich functional groups for enhanced electrochemical performance. J. Power Sources. 2016;333:125–133. doi: 10.1016/j.jpowsour.2016.09.111. DOI

Song B., Sizemore C., Li L., Huang X., Lin Z., Moon K., Wong C.-P. Triethanolamine functionalized graphene-based composites for high performance supercapacitors. J. Mater. Chem. A. 2015;3:21789–21796. doi: 10.1039/C5TA05674H. DOI

Bakandritsos A., Pykal M., Błoński P., Jakubec P., Chronopoulos D.D., Poláková K., Georgakilas V., Čépe K., Tomanec O., Ranc V., et al. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano. 2017;11:2982–2991. doi: 10.1021/acsnano.6b08449. PubMed DOI PMC

Heng Cheong Y., Nasir M.Z.M., Bakandritsos A., Pykal M., Jakubec P., Zbořil R., Otyepka M., Pumera M. Cyanographene and Graphene Acid: The Functional Group of Graphene Derivative Determines the Application in Electrochemical Sensing and Capacitors. ChemElectroChem. 2019;6:229–234. doi: 10.1002/celc.201800675. DOI

Blanco M., Mosconi D., Tubaro C., Biffis A., Badocco D., Pastore P., Otyepka M., Bakandritsos A., Liu Z., Ren W., et al. Palladium nanoparticles supported on graphene acid: A stable and eco-friendly bifunctional C–C homo- and cross-coupling catalyst. Green Chem. 2019;21:5238–5247. doi: 10.1039/C9GC01436E. DOI

Blanco M., Mosconi D., Otyepka M., Medveď M., Bakandritsos A., Agnoli S., Granozzi G. Combined high degree of carboxylation and electronic conduction in graphene acid sets new limits for metal free catalysis in alcohol oxidation. Chem. Sci. 2019;10:9438–9445. doi: 10.1039/C9SC02954K. PubMed DOI PMC

Reuillard B., Blanco M., Calvillo L., Coutard N., Ghedjatti A., Chenevier P., Agnoli S., Otyepka M., Granozzi G., Artero V. Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation. ACS Appl. Mater. Interfaces. 2020;12:5805–5811. doi: 10.1021/acsami.9b18922. PubMed DOI PMC

Seelajaroen H., Bakandritsos A., Otyepka M., Zbořil R., Sariciftci N.S. Immobilized Enzymes on Graphene as Nanobiocatalyst. ACS Appl. Mater. Interfaces. 2020;12:250–259. doi: 10.1021/acsami.9b17777. PubMed DOI PMC

Si Y., Samulski E.T. Exfoliated Graphene Separated by Platinum Nanoparticles. Chem. Mater. 2008;20:6792–6797. doi: 10.1021/cm801356a. DOI

Eckmann A., Felten A., Mishchenko A., Britnell L., Krupke R., Novoselov K.S., Casiraghi C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012;12:3925–3930. doi: 10.1021/nl300901a. PubMed DOI

Johra F.T., Lee J.-W., Jung W.-G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014;20:2883–2887. doi: 10.1016/j.jiec.2013.11.022. DOI

Knirsch K.C., Schäfer R.A., Hauke F., Hirsch A. Mono- and Ditopic Bisfunctionalization of Graphene. Angew. Chem. Int. Ed. 2016;55:5861–5864. doi: 10.1002/anie.201511807. PubMed DOI

Vecera P., Chacón-Torres J.C., Pichler T., Reich S., Soni H.R., Görling A., Edelthalhammer K., Peterlik H., Hauke F., Hirsch A. Precise determination of graphene functionalization by in situ Raman spectroscopy. Nat. Commun. 2017;8:15192. doi: 10.1038/ncomms15192. PubMed DOI PMC

Englert J.M., Vecera P., Knirsch K.C., Schäfer R.A., Hauke F., Hirsch A. Scanning-Raman-Microscopy for the Statistical Analysis of Covalently Functionalized Graphene. ACS Nano. 2013;7:5472–5482. doi: 10.1021/nn401481h. PubMed DOI

Vermisoglou E.C., Jakubec P., Bakandritsos A., Pykal M., Talande S., Kupka V., Zbořil R., Otyepka M. Chemical Tuning of Specific Capacitance in Functionalized Fluorographene. Chem. Mater. 2019;31:4698–4709. doi: 10.1021/acs.chemmater.9b00655. PubMed DOI PMC

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Stoller M.D., Ruoff R.S. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 2010;3:1294. doi: 10.1039/c0ee00074d. DOI

Noori A., El-Kady M.F., Rahmanifar M.S., Kaner R.B., Mousavi M.F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 2019;48:1272–1341. doi: 10.1039/C8CS00581H. PubMed DOI

Andreas H.A., Conway B.E. Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochim. Acta. 2006;51:6510–6520. doi: 10.1016/j.electacta.2006.04.045. DOI

Kong L., Zhang C., Wang J., Qiao W., Ling L., Long D. Free-Standing T-Nb2O5/Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-Ion Intercalation Pseudocapacitor. ACS Nano. 2015;9:11200–11208. doi: 10.1021/acsnano.5b04737. PubMed DOI

Augustyn V., Come J., Lowe M.A., Kim J.W., Taberna P.-L., Tolbert S.H., Abruña H.D., Simon P., Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013;12:518–522. doi: 10.1038/nmat3601. PubMed DOI

Spinolo G., Ardizzone S., Trasatti S. Surface characterization of Co3O4 electrodes prepared by the sol-gel method. J. Electroanal. Chem. 1997;423:49–57. doi: 10.1016/S0022-0728(96)04841-3. DOI

He Y., Yang X., An N., Wang X., Yang Y., Hu Z. Covalently functionalized heterostructured carbon by redox-active p-phenylenediamine molecules for high-performance symmetric supercapacitors. New J. Chem. 2019;43:1688–1698. doi: 10.1039/C8NJ05514A. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...