The planar cell polarity protein VANG-1/Vangl negatively regulates Wnt/β-catenin signaling through a Dvl dependent mechanism

. 2018 Dec ; 14 (12) : e1007840. [epub] 20181207

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30532125

Grantová podpora
P40 OD010440 NIH HHS - United States

Odkazy

PubMed 30532125
PubMed Central PMC6307821
DOI 10.1371/journal.pgen.1007840
PII: PGENETICS-D-18-00816
Knihovny.cz E-zdroje

Van Gogh-like (Vangl) and Prickle (Pk) are core components of the non-canonical Wnt planar cell polarity pathway that controls epithelial polarity and cell migration. Studies in vertebrate model systems have suggested that Vangl and Pk may also inhibit signaling through the canonical Wnt/β-catenin pathway, but the functional significance of this potential cross-talk is unclear. In the nematode C. elegans, the Q neuroblasts and their descendants migrate in opposite directions along the anteroposterior body axis. The direction of these migrations is specified by Wnt signaling, with activation of canonical Wnt signaling driving posterior migration, and non-canonical Wnt signaling anterior migration. Here, we show that the Vangl ortholog VANG-1 influences the Wnt signaling response of the Q neuroblasts by negatively regulating canonical Wnt signaling. This inhibitory activity depends on a carboxy-terminal PDZ binding motif in VANG-1 and the Dishevelled ortholog MIG-5, but is independent of the Pk ortholog PRKL-1. Moreover, using Vangl1 and Vangl2 double mutant cells, we show that a similar mechanism acts in mammalian cells. We conclude that cross-talk between VANG-1/Vangl and the canonical Wnt pathway is an evolutionarily conserved mechanism that ensures robust specification of Wnt signaling responses.

Zobrazit více v PubMed

Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012; 149(6):1192–205. Epub 2012/06/12. 10.1016/j.cell.2012.05.012 . PubMed DOI

Polakis P. Wnt signaling in cancer. Cold Spring Harbor Persp Biol. 2012; 4(5). Epub 2012/03/23. 10.1101/cshperspect.a008052 ; PubMed Central PMCID: PMC3331705. PubMed DOI PMC

Angers S, Moon RT. Proximal events in Wnt signal transduction. Nature Rev Mol Cell Biol. 2009; 10(7):468–77. Epub 2009/06/19. 10.1038/nrm2717 . PubMed DOI

Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell. 2011; 21(1):120–33. Epub 2011/07/19. 10.1016/j.devcel.2011.06.011 ; PubMed Central PMCID: PMC3166557. PubMed DOI PMC

Jessen JR, Topczewski J, Bingham S, Sepich DS, Marlow F, Chandrasekhar A, et al. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol. 2002; 4(8):610–5. Epub 2002/07/10. 10.1038/ncb828 ; PubMed Central PMCID: PMC2219916. PubMed DOI PMC

Takeuchi M, Nakabayashi J, Sakaguchi T, Yamamoto TS, Takahashi H, Takeda H, et al. The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol 2003; 13(8):674–9. Epub 2003/04/18. . PubMed

Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM. Dishevelled controls cell polarity during Xenopus gastrulation. Nature. 2000; 405(6782):81–5. Epub 2000/05/16. 10.1038/35011077 . PubMed DOI

Lei YP, Zhang T, Li H, Wu BL, Jin L, Wang HY. VANGL2 mutations in human cranial neural-tube defects. New Engl J Med. 2010; 362(23):2232–5. Epub 2010/06/19. 10.1056/NEJMc0910820 . PubMed DOI

Kibar Z, Capra V, Gros P. Toward understanding the genetic basis of neural tube defects. Clin Genet. 2007; 71(4):295–310. Epub 2007/05/02. 10.1111/j.1399-0004.2007.00793.x . PubMed DOI

Glasco DM, Sittaramane V, Bryant W, Fritzsch B, Sawant A, Paudyal A, et al. The mouse Wnt/PCP protein Vangl2 is necessary for migration of facial branchiomotor neurons, and functions independently of Dishevelled. Dev Biol. 2012; 369(2):211–22. Epub 2012/07/10. 10.1016/j.ydbio.2012.06.021 ; PubMed Central PMCID: PMC3484895. PubMed DOI PMC

Park M, Moon RT. The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nat Cell Biol. 2002; 4(1):20–5. Epub 2002/01/10. 10.1038/ncb716 . PubMed DOI

Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol. 2003; 13(8):680–5. Epub 2003/04/18. . PubMed

Angonin D, Van Raay TJ. Nkd1 functions as a passive antagonist of Wnt signaling. PLoS ONE. 2013; 8(8):e74666 Epub 2013/09/07. 10.1371/journal.pone.0074666 ; PubMed Central PMCID: PMC3756965. PubMed DOI PMC

Li S, Esterberg R, Lachance V, Ren D, Radde-Gallwitz K, Chi F, et al. Rack1 is required for Vangl2 membrane localization and planar cell polarity signaling while attenuating canonical Wnt activity. Proc Nat Acad Sci USA. 2011; 108(6):2264–9. Epub 2011/01/26. 10.1073/pnas.1013170108 ; PubMed Central PMCID: PMC3038753. PubMed DOI PMC

Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA, et al. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell. 2011; 20(2):163–76. Epub 2011/02/15. 10.1016/j.devcel.2011.01.001 PubMed DOI PMC

Sawa H, Korswagen HC. Wnt signaling in C. elegans. Wormbook. 2013. doi: doi/10.1895/wormbook.1.7.2 PubMed DOI PMC

Korswagen HC. Canonical and non-canonical Wnt signaling pathways in Caenorhabditis elegans: variations on a common signaling theme. BioEssays. 2002; 24(9):801–10. Epub 2002/09/05. 10.1002/bies.10145 . PubMed DOI

Silhankova M, Korswagen HC. Migration of neuronal cells along the anterior-posterior body axis of C. elegans: Wnts are in control. Curr Opin Genet Dev. 2007; 17(4):320–5. Epub 2007/07/24. 10.1016/j.gde.2007.05.007 . PubMed DOI

Sanchez-Alvarez L, Visanuvimol J, McEwan A, Su A, Imai JH, Colavita A. VANG-1 and PRKL-1 cooperate to negatively regulate neurite formation in Caenorhabditis elegans. PLoS Genet. 2011; 7(9):e1002257 Epub 2011/09/14. 10.1371/journal.pgen.1002257 ; PubMed Central PMCID: PMC3164692. PubMed DOI PMC

Zinovyeva AY, Yamamoto Y, Sawa H, Forrester WC. Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development. Genetics. 2008; 179(3):1357–71. Epub 2008/07/16. 10.1534/genetics.108.090290 ; PubMed Central PMCID: PMC2475739. PubMed DOI PMC

Green JL, Inoue T, Sternberg PW. Opposing Wnt pathways orient cell polarity during organogenesis. Cell. 2008; 134(4):646–56. Epub 2008/08/30. 10.1016/j.cell.2008.06.026 ; PubMed Central PMCID: PMC2603076. PubMed DOI PMC

Hoffmann M, Segbert C, Helbig G, Bossinger O. Intestinal tube formation in Caenorhabditis elegans requires vang-1 and egl-15 signaling. Dev Biol. 2010; 339(2):268–79. Epub 2009/12/17. 10.1016/j.ydbio.2009.12.002 . PubMed DOI

Rella L, Fernandes Povoa EE, Korswagen HC. The Caenorhabditis elegans Q neuroblasts: A powerful system to study cell migration at single-cell resolution in vivo. Genesis. 2016; 54(4):198–211. Epub 2016/03/05. 10.1002/dvg.22931 . PubMed DOI

Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977; 56(1):110–56. Epub 1977/03/01. . PubMed

Whangbo J, Kenyon C. A Wnt signaling system that specifies two patterns of cell migration in C. elegans. Mol Cell. 1999; 4(5):851–8. Epub 2000/01/05. . PubMed

Korswagen HC, Coudreuse DY, Betist MC, van de Water S, Zivkovic D, Clevers HC. The Axin-like protein PRY-1 is a negative regulator of a canonical Wnt pathway in C. elegans. Genes Dev. 2002; 16(10):1291–302. Epub 2002/05/23. 10.1101/gad.981802 ; PubMed Central PMCID: PMC186271. PubMed DOI PMC

Korswagen HC, Herman MA, Clevers HC. Distinct β-catenins mediate adhesion and signalling functions in C. elegans. Nature. 2000; 406(6795):527–32. Epub 2000/08/22. 10.1038/35020099 . PubMed DOI

Maloof JN, Whangbo J, Harris JM, Jongeward GD, Kenyon C. A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development. 1999; 126(1):37–49. Epub 1998/12/03. . PubMed

Ji N, Middelkoop TC, Mentink RA, Betist MC, Tonegawa S, Mooijman D, et al. Feedback control of gene expression variability in the Caenorhabditis elegans Wnt pathway. Cell. 2013; 155(4):869–80. Epub 2013/11/12. 10.1016/j.cell.2013.09.060 . PubMed DOI

Harris J, Honigberg L, Robinson N, Kenyon C. Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position. Development. 1996; 122(10):3117–31. Epub 1996/10/01. . PubMed

Salser SJ, Kenyon C. Activation of a C. elegans Antennapedia homologue in migrating cells controls their direction of migration. Nature. 1992; 355(6357):255–8. Epub 1992/01/16. 10.1038/355255a0 . PubMed DOI

Mentink RA, Middelkoop TC, Rella L, Ji N, Chung YT, Betist MC, et al. Cell intrinsic modulation of Wnt signaling controls neuroblast migration in C. elegans. Dev Cell. 2014; Epub 2014/10/16. 10.1016/j.devcel.2014.08.008 . PubMed DOI

Harterink M, Kim DH, Middelkoop TC, Doan TD, van Oudenaarden A, Korswagen HC. Neuroblast migration along the anteroposterior axis of C. elegans is controlled by opposing gradients of Wnts and a secreted Frizzled-related protein. Development. 2011; 138(14):2915–24. Epub 2011/06/10. 10.1242/dev.064733 ; PubMed Central PMCID: PMC3119304. PubMed DOI PMC

Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat Meth. 2008; 5(10):877–9. Epub 2008/09/23. 10.1038/nmeth.1253 ; PubMed Central PMCID: PMC3126653. PubMed DOI PMC

Middelkoop TC, Williams L, Yang PT, Luchtenberg J, Betist MC, Ji N, et al. The thrombospondin repeat containing protein MIG-21 controls a left-right asymmetric Wnt signaling response in migrating C. elegans neuroblasts. Dev Biol. 2012; 361(2):338–48. Epub 2011/11/15. 10.1016/j.ydbio.2011.10.029 . PubMed DOI

Honigberg L, Kenyon C. Establishment of left/right asymmetry in neuroblast migration by UNC-40/DCC, UNC-73/Trio and DPY-19 proteins in C. elegans. Development. 2000; 127(21):4655–68. Epub 2000/10/12. . PubMed

Ou G, Vale RD. Molecular signatures of cell migration in C. elegans Q neuroblasts. J Cell Biol. 2009; 185(1):77–85. Epub 2009/04/08. 10.1083/jcb.200812077 ; PubMed Central PMCID: PMC2700521. PubMed DOI PMC

Yang PT, Lorenowicz MJ, Silhankova M, Coudreuse DY, Betist MC, Korswagen HC. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell. 2008; 14(1):140–7. Epub 2007/12/28. 10.1016/j.devcel.2007.12.004 . PubMed DOI

Hao HX, Xie Y, Zhang Y, Charlat O, Oster E, Avello M, et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature. 2012; 485(7397):195–200. Epub 2012/05/12. 10.1038/nature11019 . PubMed DOI

Torban E, Wang HJ, Groulx N, Gros P. Independent mutations in mouse Vangl2 that cause neural tube defects in looptail mice impair interaction with members of the Dishevelled family. J Biol Chem. 2004; 279(50):52703–13. Epub 2004/10/01. 10.1074/jbc.M408675200 . PubMed DOI

Heppert JK, Pani AM, Roberts AM, Dickinson DJ, Goldstein B. A CRISPR tagging-based screen reveals localized players in Wnt-directed asymmetric cell division. Genetics. 2018; 208(3):1147–64. Epub 2018/01/20. 10.1534/genetics.117.300487 PubMed DOI PMC

Wu M, Herman MA. A novel noncanonical Wnt pathway is involved in the regulation of the asymmetric B cell division in C. elegans. Dev Biol. 2006; 293(2):316–29. Epub 2006/04/25. 10.1016/j.ydbio.2005.12.024 . PubMed DOI

Gao C, Chen YG. Dishevelled: The hub of Wnt signaling. Cell Signal. 2010; 22(5):717–27. Epub 2009/12/17. 10.1016/j.cellsig.2009.11.021 . PubMed DOI

Bryja V, Schulte G, Rawal N, Grahn A, Arenas E. Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. J Cell Sci. 2007; 120(Pt 4):586–95. Epub 2007/01/25. 10.1242/jcs.03368 . PubMed DOI

Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, et al. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol. 2011; 13(8):914–23. Epub 2011/07/05. 10.1038/ncb2281 . PubMed DOI PMC

Carreira-Barbosa F, Concha ML, Takeuchi M, Ueno N, Wilson SW, Tada M. Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development. 2003; 130(17):4037–46. Epub 2003/07/23. . PubMed

Chan DW, Chan CY, Yam JW, Ching YP, Ng IO. Prickle-1 negatively regulates Wnt/β-catenin pathway by promoting Dishevelled ubiquitination/degradation in liver cancer. Gastroenterology. 2006; 131(4):1218–27. Epub 2006/10/13. 10.1053/j.gastro.2006.07.020 . PubMed DOI

Piazzi G, Selgrad M, Garcia M, Ceccarelli C, Fini L, Bianchi P, et al. Van-Gogh-like 2 antagonises the canonical WNT pathway and is methylated in colorectal cancers. British J Cancer. 2013; 108(8):1750–6. Epub 2013/04/13. 10.1038/bjc.2013.142 ; PubMed Central PMCID: PMC3668461. PubMed DOI PMC

Wildwater M, Sander N, de Vreede G, van den Heuvel S. Cell shape and Wnt signaling redundantly control the division axis of C. elegans epithelial stem cells. Development. 2011; 138(20):4375–85. Epub 2011/09/23. 10.1242/dev.066431 . PubMed DOI

Kim E, Sun L, Gabel CV, Fang-Yen C. Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS ONE. 2013; 8(1):e53419 Epub 2013/01/10. 10.1371/journal.pone.0053419 PubMed DOI PMC

Malcikova J, Stano-Kozubik K, Tichy B, Kantorova B, Pavlova S, Tom N, et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia. 2015; 29(4):877–85. Epub 2014/10/08. 10.1038/leu.2014.297 PubMed DOI PMC

Paclikova P, Bernatik O, Radaszkiewicz TW, Bryja V. N-terminal part of Dishevelled DEP domain is required for Wnt/β-catenin signaling in mammalian cells. Mol Cell Biol. 2017; Epub 2017/07/05. 10.1128/MCB.00145-17 PubMed DOI PMC

Belotti E, Puvirajesinghe TM, Audebert S, Baudelet E, Camoin L, Pierres M, et al. Molecular characterisation of endogenous Vangl2/Vangl1 heteromeric protein complexes. PLoS ONE. 2012; 7(9):e46213 Epub 2012/10/03. 10.1371/journal.pone.0046213 PubMed DOI PMC

Zhu Z, Liu J, Yi P, Tian D, Chai Y, Li W, et al. A proneural gene controls C. elegans neuroblast asymmetric division and migration. FEBS Lett. 2014; 588(7):1136–43. Epub 2014/03/05. 10.1016/j.febslet.2014.02.036 . PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...