Protease associated domain of RNF43 is not necessary for the suppression of Wnt/β-catenin signaling in human cells

. 2020 Jun 11 ; 18 (1) : 91. [epub] 20200611

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, audiovizuální média

Perzistentní odkaz   https://www.medvik.cz/link/pmid32527265
Odkazy

PubMed 32527265
PubMed Central PMC7291719
DOI 10.1186/s12964-020-00559-0
PII: 10.1186/s12964-020-00559-0
Knihovny.cz E-zdroje

BACKGROUND: RNF43 and its homolog ZNRF3 are transmembrane E3 ubiquitin ligases frequently mutated in many human cancer types. Their main role relays on the inhibition of canonical Wnt signaling by the negative regulation of frizzled receptors and LRP5/6 co-receptors levels at the plasma membrane. Intracellular RING domains of RNF43/ZNRF3 mediate the key enzymatic activity of these proteins, but the function of the extracellular Protease Associated (PA) fold in the inhibition of Wnt/β-catenin pathway is controversial up-to date, apart from the interaction with secreted antagonists R-spondin family proteins shown by the crystallographic studies. METHODS: In our research we utilised cell-based approaches to study the role of RNF43 lacking PA domain in the canonical Wnt signalling pathway transduction. We developed controlled overexpression (TetON) and CRISPR/Cas9 mediated knock-out models in human cells. RESULTS: RNF43ΔPA mutant activity impedes canonical Wnt pathway, as manifested by the reduced phosphorylation of LRP6, DVL2 and DVL3 and by the decreased β-catenin-dependent gene expression. Finally, rescue experiments in the CRISPR/Cas9 derived RNF43/ZNRF3 double knock-out cell lines showed that RNFΔPA overexpression is enough to inhibit activation of LRP6 and β-catenin activity as shown by the Western blot and Top flash dual luciferase assays. Moreover, RNF43 variant without PA domain was not sensitive to the R-spondin1 treatment. CONCLUSION: Taken together, our results help to understand better the mode of RNF43 tumor suppressor action and solve some discrepancies present in the field. Video Abstract.

Zobrazit více v PubMed

de Lau W, Peng WC, Gros P, Clevers H. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev. 2014. 10.1101/gad.235473.113. PubMed PMC

Zebisch M, Jones EY. ZNRF3/RNF43 – a direct linkage of extracellular recognition and E3 ligase activity to modulate cell surface signalling. Prog Biophys Mol Biol. 2015;118:112–118. doi: 10.1016/j.pbiomolbio.2015.04.006. PubMed DOI

Wiese KE, Nusse R, van Amerongen R. Wnt signalling: conquering complexity. Development. 2018;145:dev165902. doi: 10.1242/dev.165902. PubMed DOI

Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–999. doi: 10.1016/j.cell.2017.05.016. PubMed DOI

Grainger S, Willert K. Mechanisms of Wnt signaling and control. Wiley Interdiscip Rev Syst Biol Med. 2018;10:e1422. doi: 10.1002/wsbm.1422. PubMed DOI PMC

Giannakis M, Hodis E, Jasmine Mu X, et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat Genet. 2014;46:1264–1266. doi: 10.1038/ng.3127. PubMed DOI PMC

Ryland GL, Hunter SM, Doyle MA, Rowley SM, Christie M, Allan PE, Bowtell DD, Gorringe KL, Campbell IG, Campbell IG. RNF43 is a tumour suppressor gene mutated in mucinous tumours of the ovary. J Pathol. 2013;229:469–476. doi: 10.1002/path.4134. PubMed DOI

Jiao Y, Yonescu R, Offerhaus GJA, et al. Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. J Pathol. 2014;232:428–435. doi: 10.1002/path.4310. PubMed DOI PMC

Wang K, Yuen ST, Xu J, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–582. doi: 10.1038/ng.2983. PubMed DOI

Koo B-K, Spit M, Jordens I, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature. 2012;488:665–669. doi: 10.1038/nature11308. PubMed DOI

Hao H-X, Xie Y, Zhang Y, et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature. 2012;485:195–200. doi: 10.1038/nature11019. PubMed DOI

Loregger A, Grandl M, Mejías-Luque R, et al (2015) The E3 ligase RNF43 inhibits Wnt signaling downstream of mutated β-catenin by sequestering TCF4 to the nuclear membrane. Sci signal 8:ra90. PubMed

Jiang X, Charlat O, Zamponi R, Yang Y, Cong F. Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell. 2015;58:522–533. doi: 10.1016/j.molcel.2015.03.015. PubMed DOI

Lebensohn AM, Rohatgi R. R-spondins can potentiate WNT signaling without LGRs. Elife. 2018;7:e33126. doi: 10.7554/eLife.33126. PubMed DOI PMC

Zebisch M, Xu Y, Krastev C, MacDonald BT, Chen M, Gilbert RJC, He X, Jones EY. Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nat Commun. 2013;4:2787. doi: 10.1038/ncomms3787. PubMed DOI PMC

Chen P-H, Chen X, Lin Z, Fang D, He X. The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev. 2013;27:1345–1350. doi: 10.1101/gad.219915.113. PubMed DOI PMC

Peng WCC, DeLau W, Forneris F, et al. Structure of stem cell growth factor R-spondin 1 in complex with the Ectodomain of its receptor LGR5. Cell Rep. 2013;3:1885–1892. doi: 10.1016/j.celrep.2013.06.009. PubMed DOI

Peng WC, de Lau W, Madoori PK, Forneris F, Granneman JCM, Clevers H, Gros P. Structures of Wnt-antagonist ZNRF3 and its complex with R-Spondin 1 and implications for signaling. PLoS One. 2013;8:e83110. doi: 10.1371/journal.pone.0083110. PubMed DOI PMC

Wang D, Huang B, Zhang S, Yu X, Wu W, Wang X. Structural basis for R-spondin recognition by LGR4/5/6 receptors. Genes Dev. 2013;27:1339–1344. doi: 10.1101/gad.219360.113. PubMed DOI PMC

Xu K, Xu Y, Rajashankar KR, Robev D, Nikolov DB. Crystal structures of Lgr4 and its complex with R-Spondin1. Structure. 2013;21:1683–1689. doi: 10.1016/j.str.2013.07.001. PubMed DOI PMC

Moffat LL, Robinson RE, Bakoulis A, Clark SG. The conserved transmembrane RING finger protein PLR-1 downregulates Wnt signaling by reducing frizzled, Ror and Ryk cell-surface levels in C elegans. Development. 2014;141:617–628. doi: 10.1242/dev.101600. PubMed DOI PMC

Tsukiyama T, Fukui A, Terai S, Fujioka Y, Shinada K, Takahashi H, Yamaguchi TP, Ohba Y, Hatakeyama S. Molecular role of RNF43 in canonical and noncanonical Wnt signaling. Mol Cell Biol. 2015;35:2007–2023. doi: 10.1128/MCB.00159-15. PubMed DOI PMC

Schwank G, Koo B-K, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell Organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13:653–658. doi: 10.1016/j.stem.2013.11.002. PubMed DOI

Matsuda T, Cepko CL. Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci. 2007;104:1027–1032. doi: 10.1073/pnas.0610155104. PubMed DOI PMC

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science (80- ) 339:823–826. PubMed PMC

Mentink RA, Rella L, Radaszkiewicz TW, Gybel T, Betist MC, Bryja V, Korswagen HC. The planar cell polarity protein VANG-1/Vangl negatively regulates Wnt/β-catenin signaling through a Dvl dependent mechanism. PLoS Genet. 2018;14:e1007840. doi: 10.1371/journal.pgen.1007840. PubMed DOI PMC

Malcikova J, Stano-Kozubik K, Tichy B, et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia. 2015;29:877–885. doi: 10.1038/leu.2014.297. PubMed DOI PMC

Paclíková P, Bernatík O, Radaszkiewicz TW, Bryja V. The N-terminal part of the Dishevelled DEP domain is required for Wnt/β- catenin signaling in mammalian cells. Mol Cell Biol. 2017. 10.1128/MCB.00145-17. PubMed PMC

Jho E, Zhang T, Domon C, Joo C-K, Freund J-N, Costantini F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol. 2002;22:1172–1183. doi: 10.1128/MCB.22.4.1172-1183.2002. PubMed DOI PMC

van Dijk JR, Yamazaki Y, Palmer RH. Tumour-associated mutations of PA-TM-RING ubiquitin ligases RNF167/RNF13 identify the PA domain as a determinant for endosomal localization. Biochem J. 2014;459:27–36. doi: 10.1042/BJ20131067. PubMed DOI

Bryja V, Schulte G, Arenas E. Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphorylation of Dvl to activate β-catenin. Cell Signal. 2007;19:610–616. doi: 10.1016/j.cellsig.2006.08.011. PubMed DOI

Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438:873–877. doi: 10.1038/nature04185. PubMed DOI PMC

de Lau WB, Snel B, Clevers HC. The R-spondin protein family. Genome Biol. 2012;13:242. doi: 10.1186/gb-2012-13-3-242. PubMed DOI PMC

Forbes SA, Beare D, Boutselakis H, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45:D777–D783. doi: 10.1093/nar/gkw1121. PubMed DOI PMC

Lineberry N, Su L, Soares L, Fathman CG. The single subunit Transmembrane E3 ligase gene related to Anergy in lymphocytes (GRAIL) captures and then Ubiquitinates Transmembrane proteins across the cell membrane. J Biol Chem. 2008;283:28497. doi: 10.1074/jbc.M805092200. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...