Transcription factor c-Myb: novel prognostic factor in osteosarcoma
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34994868
DOI
10.1007/s10585-021-10145-4
PII: 10.1007/s10585-021-10145-4
Knihovny.cz E-zdroje
- Klíčová slova
- Chemoresistance, Metastasis, Osteosarcoma, Prognosis, Proliferation, c-Myb,
- MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory kostí * patologie MeSH
- osteosarkom * patologie MeSH
- pohyb buněk genetika MeSH
- prognóza MeSH
- proliferace buněk MeSH
- regulace genové exprese u nádorů MeSH
- retrospektivní studie MeSH
- signální dráha Wnt MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The transcription factor c-Myb is an oncoprotein promoting cell proliferation and survival when aberrantly activated/expressed, thus contributing to malignant transformation. Overexpression of c-Myb has been found in leukemias, breast, colon and adenoid cystic carcinoma. Recent studies revealed its expression also in osteosarcoma cell lines and suggested its functional importance during bone development. However, the relevance of c-Myb in control of osteosarcoma progression remains unknown. A retrospective clinical study was carried out to assess a relationship between c-Myb expression in archival osteosarcoma tissues and prognosis in a cohort of high-grade osteosarcoma patients. In addition, MYB was depleted in metastatic osteosarcoma cell lines SAOS-2 LM5 and 143B and their growth, chemosensitivity, migration and metastatic activity were determined. Immunohistochemical analysis revealed that high c-Myb expression was significantly associated with poor overall survival in the cohort and metastatic progression in young patients. Increased level of c-Myb was detected in metastatic osteosarcoma cell lines and its depletion suppressed their growth, colony-forming capacity, migration and chemoresistance in vitro in a cell line-dependent manner. MYB knock-out resulted in reduced metastatic activity of both SAOS-2 LM5 and 143B cell lines in immunodeficient mice. Transcriptomic analysis revealed the c-Myb-driven functional programs enriched for genes involved in the regulation of cell growth, stress response, cell adhesion and cell differentiation/morphogenesis. Wnt signaling pathway was identified as c-Myb target in osteosarcoma cells. Taken together, we identified c-Myb as a negative prognostic factor in osteosarcoma and showed its involvement in the regulation of osteosarcoma cell growth, chemosensitivity, migration and metastatic activity.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Pathology University Hospital Brno Brno Czech Republic
Institute of Physiology University of Zurich Zurich Switzerland
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Taran SJ, Taran R, Malipatil N (2017) Pediatric osteosarcoma: an updated review. Indian J Med Paediatr Oncol 38:33–43. https://doi.org/10.4103/0971-5851.203513 PubMed DOI PMC
Ferguson JL, Turner SP (2018) Bone cancer: diagnosis and treatment principles. Am Fam Phys 98:205–213
Smeland S, Bielack SS, Whelan J et al (2019) Survival and prognosis with osteosarcoma: outcomes in more than patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur J Cancer 109:36–50. https://doi.org/10.1016/j.ejca.2018.11.027 PubMed DOI PMC
Jafari F, Javdansirat S, Sanaie S, Naseri A, Shamekh A, Rostamzadeh D, Dolati S (2020) Osteosarcoma: a comprehensive review of management and treatment strategies. Ann Diagn Pathol 49:151654. https://doi.org/10.1016/j.anndiagpath.2020.151654 PubMed DOI
Zamborsky R, Kokavec M, Harsanyi S, Danisovic L (2019) Identification of prognostic and predictive osteosarcoma biomarkers. Med Sci 7:28. https://doi.org/10.3390/medsci7020028 DOI
Luo H, Wang P, Ye H, Shi J, Dai L, Wang X, Song C, Zhang J, Li J (2020) Serum-derived microRNAs as prognostic biomarkers in osteosarcoma: a meta-analysis. Front Genet 11:789. https://doi.org/10.3389/fgene.2020.00789 PubMed DOI PMC
Ramsay RG, Gonda TJ (2008) MYB function in normal and cancer cells. Nat Rev Cancer 8:523–534. https://doi.org/10.1038/nrc2439 PubMed DOI
Matalová E, Buchtová M, Tucker AS, Bender TP, Janečková E, Lungová V, Balková S, Smarda J (2011) Expression and characterization of c-Myb in prenatal odontogenesis. Dev Growth Differ 53:793–803. https://doi.org/10.1111/j.1440-169X.2011.01287.x PubMed DOI
Oralova V, Matalova E, Killinger M, Knopfova L, Smarda J, Buchtova M (2017) Osteogenic potential of the transcription factor c-MYB. Calcif Tissue Int 100:311–322. https://doi.org/10.1007/s00223-016-0219-2 PubMed DOI
Pattabiraman DR, Gonda TJ (2013) Role and potential for therapeutic targeting of MYB in leukemia. Leukemia 27:269–277. https://doi.org/10.1038/leu.2012.225 PubMed DOI
Hugo H, Cures A, Suraweera N, Drabsch Y, Purcell D, Mantamadiotis T, Phillips W, Dobrovic A, Zupi G, Gonda TJ, Iacopetta B, Ramsay RG (2006) Mutations in the MYB intron I regulatory sequence increase transcription in colon cancers. Genes Chromosom Cancer 45:1143–1154. https://doi.org/10.1002/gcc.20378 PubMed DOI
Cicirò Y, Sala A (2021) MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis 10:19. https://doi.org/10.1038/s41389-021-00309-y PubMed DOI PMC
Kauraniemi P, Hedenfalk I, Persson K, Duggan DJ, Tanner M, Johannsson O, Olsson H, Trent JM, Isola J, Borg A (2000) MYB oncogene amplification in hereditary BRCA1 breast cancer. Cancer Res 60:5323–5328 PubMed
Liu X, Chen D, Lao X, Liang Y (2019) The value of MYB as a prognostic marker for adenoid cystic carcinoma: meta-analysis. Head Neck 41:1517–1524. https://doi.org/10.1002/hed.25597 PubMed DOI
Guo X, Zhang J, Pang J, He S, Li G, Chong Y, Li C, Jiao Z, Zhang S, Shao M (2016) MicroRNA-503 represses epithelial-mesenchymal transition and inhibits metastasis of osteosarcoma by targeting c-myb. Tumour Biol 37:9181–9187. https://doi.org/10.1007/s13277-016-4797-4 PubMed DOI
Kanamori M, Sano A, Yasuda T, Hori T, Suzuki K (2012) Array-based comparative genomic hybridization for genomic-wide screening of DNA copy number alterations in aggressive bone tumors. J Exp Clin Cancer Res 31:100. https://doi.org/10.1186/1756-9966-31-100 PubMed DOI PMC
Concordet JP, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46:242–245. https://doi.org/10.1093/nar/gky354 DOI
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. https://doi.org/10.1038/nprot.2013.143 PubMed DOI PMC
Dúcka M, Kučeríková M, Trčka F, Červinka J, Biglieri E, Šmarda J, Borsig L, Beneš P, Knopfová L (2021) c-Myb interferes with inflammatory IL1α-NF-κB pathway in breast cancer cells. Neoplasia 23:326–336. https://doi.org/10.1016/j.neo.2021.01.002 PubMed DOI
Nehybova T, Smarda J, Daniel L, Brezovsky J, Benes P (2015) Wedelolactone induces growth of breast cancer cells by stimulation of estrogen receptor signalling. J Steroid Biochem Mol Biol 152:76–83. https://doi.org/10.1016/j.jsbmb.2015.04.019 PubMed DOI
Vymetalova L, Kucirkova T, Knopfova L, Pospisilova V, Kasko T, Lejdarova H, Makaturova E, Kuglik P, Oralova V, Matalova E, Benes P, Koristek Z, Forostyak S (2020) Large-scale automated hollow-fiber bioreactor expansion of umbilical cord-derived human mesenchymal stromal cells for neurological disorders. Neurochem Res 45:204–214. https://doi.org/10.1007/s11064-019-02925-y PubMed DOI
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12 DOI
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635 PubMed DOI PMC
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656 PubMed DOI
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8 PubMed DOI PMC
Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B (2019) WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res 47:199–205. https://doi.org/10.1093/nar/gkz401 DOI
Radaszkiewicz T, Bryja V (2020) Protease associated domain of RNF43 is not necessary for the suppression of Wnt/β-catenin signaling in human cells. Cell Commun Signal 18:91. https://doi.org/10.1186/s12964-020-00559-0 PubMed DOI PMC
Menendez-Benito V, Verhoef LG, Masucci MG, Dantuma NP (2005) Endoplasmic reticulum stress compromises the ubiquitin-proteasome systém. Hum Mol Genet 14:2787–2799. https://doi.org/10.1093/hmg/ddi312 PubMed DOI
Anderson WJ, Doyle LA (2021) Updates from the 2020 world health organization classification of soft tissue and bone tumours. Histopathology 78:644–657. https://doi.org/10.1111/his.14265 PubMed DOI
Tichý M, Knopfová L, Jarkovský J, Pekarčíková L, Veverková L, Vlček P, Katolická J, Čapov I, Hermanová M, Šmarda J, Beneš P (2016) Overexpression of c-Myb is associated with suppression of distant metastases in colorectal carcinoma. Tumour Biol 37:10723–10729. https://doi.org/10.1007/s13277-016-4956-7 PubMed DOI
Muff R, Ram Kumar RM, Botter SM, Born W, Fuchs B (2012) Genes regulated in metastatic osteosarcoma: evaluation by microarray analysis in four human and two mouse cell line systems. Sarcoma 2012:937506. https://doi.org/10.1155/2012/937506 PubMed DOI PMC
Liu Y, Tao S, Liao L, Li Y, Li H, Li Z, Lin L, Wan X, Yang X, Chen L (2020) TRIM25 promotes the cell survival and growth of hepatocellular carcinoma through targeting Keap1-Nrf2 pathway. Nat Commun 11:348. https://doi.org/10.1038/s41467-019-14190-2 PubMed DOI PMC
Xu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, Gao B, Mělo-Cardenas J, Zhang B, Zhang J, Song J, Zhang D, Zhang J, Fan Y, Li H, Fang D (2016) The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun 7:12073. https://doi.org/10.1038/ncomms12073 PubMed DOI PMC
Siwecka N, Rozpędek W, Pytel D, Wawrzynkiewicz A, Dziki A, Dziki L, Diehl JA, Majsterek I (2019) Dual role of endoplasmic reticulum stress-mediated unfolded protein response signaling pathway in carcinogenesis. Int J Mol Sci 20:4354. https://doi.org/10.3390/ijms20184354 PubMed DOI PMC
Pobre KFR, Peot GJ, Hendershot LM (2019) The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: getting by with a little help from ERdj friends. J Biol Chem 294:2098–2108. https://doi.org/10.1074/jbc.REV118.002804 PubMed DOI
Knopfová L, Biglieri E, Volodko N, Masařík M, Hermanová M, Glaus Garzón JF, Dúcka M, Kučírková T, Souček K, Šmarda J, Beneš P, Borsig L (2018) Transcription factor c-Myb inhibits breast cancer lung metastasis by suppression of tumor cell seeding. Oncogene 37:1020–1030. https://doi.org/10.1038/onc.2017.392 PubMed DOI
Nicolau M, Levine AJ, Carlsson G (2011) Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc Natl Acad Sci USA 108:7265–7270. https://doi.org/10.1073/pnas.1102826108 PubMed DOI PMC
Liu LY, Chang LY, Kuo WH, Hwa HL, Chang KJ, Hsieh FJ (2014) A supervised network analysis on gene expression profiles of breast tumors predicts a 41-gene prognostic signature of the transcription factor MYB across molecular subtypes. Comput Math Methods Med 2014:813067. https://doi.org/10.1155/2014/813067 PubMed DOI PMC
Qu X, Yan X, Kong C, Zhu Y, Li H, Pan D, Zhang X, Liu Y, Yin F, Qin H (2019) c-Myb promotes growth and metastasis of colorectal cancer through c-fos-induced epithelial-mesenchymal transition. Cancer Sci 110:3183–3196. https://doi.org/10.1111/cas.14141 PubMed DOI PMC
Millen R, Malaterre J, Cross RS, Carpinteri S, Desai J, Tran B, Darcy P, Gibbs P, Sieber O, Zeps N, Waring P, Fox S, Pereira L, Ramsay RG (2016) Immunomodulation by MYB is associated with tumor relapse in patients with early stage colorectal cancer. Oncoimmunology 5:e1149667. https://doi.org/10.1080/2162402X.2016.1149667 PubMed DOI PMC
Biroccio A, Benassi B, D’Agnano I, D’Angelo C, Buglioni S, Mottolese M, Ricciotti A, Citro G, Cosimelli M, Ramsay RG, Calabretta B, Zupi G (2001) c-Myb and Bcl-x overexpression predicts poor prognosis in colorectal cancer: clinical and experimental findings. Am J Pathol 158:1289–1299. https://doi.org/10.1016/S0002-9440(10)64080-1 PubMed DOI PMC
Zhao H, Yang L, Han Y, Li H, Ling Z, Wang Y, Wang E, Wu G (2017) Dact3 inhibits the malignant phenotype of non-small cell lung cancer through downregulation of c-Myb. Int J Clin Exp Pathol 10:11580–11587 PubMed PMC
Lu H, Wang Y, Huang Y, Shi H, Xue Q, Yang S, He S, Wang H (2013) Expression and prognostic role of c-Myb as a novel cell cycle protein in esophageal squamous cell carcinoma. Clin Transl Oncol 15:796–801. https://doi.org/10.1007/s12094-013-1009-1 PubMed DOI
Cai W, Li Q, Yang Z, Miao X, Wen Y, Huang S, Ouyang J (2013) Expression of p53 upregulated modulator of apoptosis (PUMA) and C-myb in gallbladder adenocarcinoma and their pathological significance. Clin Transl Oncol 15:818–824. https://doi.org/10.1007/s12094-013-1010-8 PubMed DOI
Zhou Y, Ness SA (2011) Myb proteins: angels and demons in normal and transformed cells. Front Biosci 16:1109–1131. https://doi.org/10.2741/3738 DOI PMC
Cesi V, Casciati A, Sesti F, Tanno B, Calabretta B, Raschellà G (2011) TGFβ-induced c-Myb affects the expression of EMT-associated genes and promotes invasion of ER+ breast cancer cells. Cell Cycle 10:4149–4161. https://doi.org/10.4161/cc.10.23.18346 PubMed DOI
Hugo HJ, Pereira L, Suryadinata R, Drabsch Y, Gonda TJ, Gunasinghe NP, Pinto C, Soo ET, van Denderen BJ, Hill P, Ramsay RG, Sarcevic B, Newgreen DF, Thompson EW (2013) Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. Breast Cancer Res 15:R113. https://doi.org/10.1186/bcr3580 PubMed DOI PMC
Volodko N, Gutor T, Petronchak O, Huley R, Dúcka M, Šmarda J, Borsig L, Beneš P, Knopfová L (2019) Low infiltration of tumor-associated macrophages in high c-Myb-expressing breast tumors. Sci Rep 9:11634. https://doi.org/10.1038/s41598-019-48051-1 PubMed DOI PMC
Germann M, Xu H, Malaterre J, Sampurno S, Huyghe M, Cheasley D, Fre S, Ramsay RG (2014) Tripartite interactions between Wnt signaling, Notch and Myb for stem/progenitor cell functions during intestinal tumorigenesis. Stem Cell Res 13:355–366. https://doi.org/10.1016/j.scr.2014.08.002 PubMed DOI
Zhuang R, Zhang X, Lu D, Wang J, Zhuo J, Wei X, Ling Q, Xie H, Zheng S, Xu X (2019) lncRNA DRHC inhibits proliferation and invasion in hepatocellular carcinoma via c-Myb-regulated MEK/ERK signaling. Mol Carcinog 58:366–375. https://doi.org/10.1002/mc.22934 PubMed DOI
Li Y, Jin K, van Pelt GW, van Dam H, Yu X, Mesker WE, Ten Dijke P, Zhou F, Zhang L (2016) c-Myb enhances breast cancer invasion and metastasis through the Wnt/β-catenin/Axin2 pathway. Cancer Res 76:3364–3375. https://doi.org/10.1158/0008-5472 PubMed DOI
Zubair H, Patel GK, Khan MA, Azim S, Zubair A, Singh S, Srivastava SK, Singh AP (2020) Proteomic analysis of MYB-regulated secretome identifies functional pathways and biomarkers: potential pathobiological and clinical implications. J Proteome Res 19:794–804. https://doi.org/10.1021/acs.jproteome.9b00641 PubMed DOI PMC
Bengtsen M, Klepper K, Gundersen S, Cuervo I, Drabløs F, Hovig E, Sandve GK, Gabrielsen OS, Eskeland R (2015) c-Myb binding sites in haematopoietic chromatin landscapes. PLoS ONE 10:e0133280. https://doi.org/10.1371/journal.pone.0133280 PubMed DOI PMC
Bies J, Sramko M, Wolff L (2013) Stress-induced phosphorylation of Thr486 in c-Myb by p38 mitogen-activated protein kinases attenuates conjugation of SUMO-2/3. J Biol Chem 288:36983–36993. https://doi.org/10.1074/jbc.M113.500264 PubMed DOI PMC
Bhattarai G, Lee YH, Lee NH, Yun JS, Hwang PH, Yi HK (2011) c-myb mediates inflammatory reaction against oxidative stress in human breast cancer cell line, MCF-7. Cell Biochem Funct 29:686–693. https://doi.org/10.1002/cbf.1808 PubMed DOI
Yang RM, Nanayakkara D, Kalimutho M, Mitra P, Khanna KK, Dray E, Gonda TJ (2019) MYB regulates the DNA damage response and components of the homology-directed repair pathway in human estrogen receptor-positive breast cancer cells. Oncogene 38:5239–5249. https://doi.org/10.1038/s41388-019-0789-3 PubMed DOI
Thompson MA, Rosenthal MA, Ellis SL, Friend AJ, Zorbas MI, Whitehead RH, Ramsay RG (1998) c-Myb down-regulation is associated with human colon cell differentiation, apoptosis, and decreased Bcl-2 expression. Cancer Res 58:5168–5175 PubMed
Ramsay RG, Friend A, Vizantios Y, Freeman R, Sicurella C, Hammett F, Armes J, Venter D (2000) Cyclooxygenase-2, a colorectal cancer nonsteroidal anti-inflammatory drug target, is regulated by c-MYB. Cancer Res 60:1805–1809 PubMed
Zhang XY, Li YF, Ma H, Gao YH (2020) Regulation of MYB mediated cisplatin resistance of ovarian cancer cells involves miR-21-wnt signaling axis. Sci Rep 10:6893. https://doi.org/10.1038/s41598-020-63396-8 PubMed DOI PMC
Andersson MK, Mangiapane G, Nevado PT, Tsakaneli A, Carlsson T, Corda G, Nieddu V, Abrahamian C, Chayka O, Rai L, Wick M, Kedaigle A, Stenman G, Sala A (2020) ATR is a MYB regulated gene and potential therapeutic target in adenoid cystic carcinoma. Oncogenesis 9:5. https://doi.org/10.1038/s41389-020-0194-3 PubMed DOI PMC
Pekarčíková L, Knopfová L, Beneš P, Šmarda J (2016) c-Myb regulates NOX1/p38 to control survival of colorectal carcinoma cells. Cell Signal 28:924–936. https://doi.org/10.1016/j.cellsig.2016.04.007 PubMed DOI
Ciznadija D, Tothill R, Waterman ML, Zhao L, Huynh D, Yu RM, Ernst M, Ishii S, Mantamadiotis T, Gonda TJ, Ramsay RG, Malaterre J (2009) Intestinal adenoma formation and MYC activation are regulated by cooperation between MYB and Wnt signaling. Cell Death Differ 16:1530–1538. https://doi.org/10.1038/cdd.2009.94 PubMed DOI
Janiszewska M, Primi MC, Izard T (2020) Cell adhesion in cancer: beyond the migration of single cells. J Biol Chem 295:2495–2505. https://doi.org/10.1074/jbc.REV119.007759 PubMed DOI PMC
Kahlert UD, Joseph JV, Kruyt FAE (2017) EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Mol Oncol 11:860–877. https://doi.org/10.1002/1878-0261.12085 PubMed DOI PMC
Beyes S, Andrieux G, Schrempp M, Aicher D, Wenzel J, Antón-García P, Boerries M, Hecht A (2019) Genome-wide mapping of DNA-binding sites identifies stemness-related genes as directly repressed targets of SNAIL1 in colorectal cancer cells. Oncogene 38:6647–6661. https://doi.org/10.1038/s41388-019-0905-4 PubMed DOI
Kim H, Bhattacharya A, Qi L (2015) Endoplasmic reticulum quality control in cancer: friend or foe. Semin Cancer Biol 33:25–33. https://doi.org/10.1016/j.semcancer.2015.02.003 PubMed DOI PMC
Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S, Paul MK (2021) Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today. https://doi.org/10.1016/j.drudis.2021.07.007 PubMed DOI
Singla A, Wang J, Yang R, Geller DS, Loeb DM, Hoang BH (2020) Wnt signaling in osteosarcoma. Adv Exp Med Biol 1258:125–139. https://doi.org/10.1007/978-3-030-43085-6_8 PubMed DOI
Tennakoon S, Aggarwal A, Kállay E (2016) The calcium-sensing receptor and the hallmarks of cancer. Biochim Biophys Acta 1863:1398–1407. https://doi.org/10.1016/j.bbamcr.2015.11.017 PubMed DOI
Bein K, Husain M, Ware JA, Mucenski ML, Rosenberg RD, Simons M (1997) c-Myb function in fibroblasts. J Cell Physiol 173:319–326. https://doi.org/10.1002/(SICI)1097-4652(199712)173:3%3c319::AID-JCP3%3e3.0.CO;2-Q PubMed DOI
Husain M, Bein K, Jiang L, Alper SL, Simons M, Rosenberg RD (1997) c-Myb-dependent cell cycle progression and Ca2+ storage in cultured vascular smooth muscle cells. Circ Res 80:617–626. https://doi.org/10.1161/01.res.80.5.617 PubMed DOI
Mateo-Lozano S, García M, Rodríguez-Hernández CJ, de Torres C (2016) Regulation of differentiation by calciumsensing receptor in normal and tumoral developing nervous system. Front Physiol 7:169. https://doi.org/10.3389/fphys.2016.0016 PubMed DOI PMC
Flores RJ, Li Y, Yu A, Shen J, Rao PH, Lau SS, Vannucci M, Lau CC, Man TK (2012) A systems biology approach reveals common metastatic pathways in osteosarcoma. BMC Syst Biol 6:50. https://doi.org/10.1186/1752-0509-6-50 PubMed DOI PMC
Rhim JS, Cho HY, Huebner RJ, Gilden RV (1975) Characterization of Kirsten sarcoma virus transformation of human cells and isolation of nonproducer human cells. Bibl Haematol 43:84–87. https://doi.org/10.1159/000399103 DOI
Jia SF, Worth LL, Kleinerman ES (1999) A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies. Clin Exp Metastasis 17:501–506. https://doi.org/10.1023/a:1006623001465 PubMed DOI
Yusenko MV, Trentmann A, Andersson MK, Ghani LA, Jakobs A, Arteaga Paz MF, Mikesch JH, Peter von Kries J, Stenman G, Klempnauer KH (2020) Monensin, a novel potent MYB inhibitor, suppresses proliferation of acute myeloid leukemia and adenoid cystic carcinoma cells. Cancer Lett 479:61–70. https://doi.org/10.1016/j.canlet.2020.01.039 PubMed DOI
Yusenko MV, Biyanee A, Andersson MK, Radetzki S, von Kries JP, Stenman G, Klempnauer KH (2021) Proteasome inhibitors suppress MYB oncogenic activity in a p300-dependent manner. Cancer Lett 520:132–142. https://doi.org/10.1016/j.canlet.2021.07.010 PubMed DOI
Uttarkar S, Piontek T, Dukare S, Schomburg C, Schlenke P, Berdel WE, Müller-Tidow C, Schmidt TJ, Klempnauer KH (2016) Small-molecule disruption of the Myb/p300 cooperation targets acute myeloid leukemia cells. Mol Cancer Ther 15:2905–2915. https://doi.org/10.1158/1535-7163.MCT-16-0185 PubMed DOI
Uttarkar S, Dassé E, Coulibaly A, Steinmann S, Jakobs A, Schomburg C, Trentmann A, Jose J, Schlenke P, Berdel WE, Schmidt TJ, Müller-Tidow C, Frampton J, Klempnauer KH (2016) Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood 127:1173–1182. https://doi.org/10.1182/blood-2015-09-668632 PubMed DOI
Uttarkar S, Frampton J, Klempnauer KH (2017) Targeting the transcription factor Myb by small-molecule inhibitors. Exp Hematol 47:31–35. https://doi.org/10.1016/j.exphem.2016.12.003 PubMed DOI
Walf-Vorderwülbecke V, Pearce K, Brooks T, Hubank M, van den Heuvel-Eibrink MM, Zwaan CM, Adams S, Edwards D, Bartram J, Samarasinghe S, Ancliff P, Khwaja A, Goulden N, Williams G, de Boer J, Williams O (2018) Targeting acute myeloid leukemia by drug-induced c-MYB degradation. Leukemia 32:882–889. https://doi.org/10.1038/leu.2017.317 PubMed DOI
Cross RS, Malaterre J, Davenport AJ, Carpinteri S, Anderson RL, Darcy PK, Ramsay RG (2015) Therapeutic DNA vaccination against colorectal cancer by targeting the MYB oncoprotein. Clin Transl Immunol 4:e30. https://doi.org/10.1038/cti.2014.29 DOI
Chen S, Wang Z, Dai X, Pan J, Ge J, Han X, Wu Z, Zhou X, Zhao T (2013) Re-expression of microRNA-150 induces EBV-positive Burkitt lymphoma differentiation by modulating c-Myb in vitro. Cancer Sci 104:826–834. https://doi.org/10.1111/cas.12156 PubMed DOI PMC
Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics